IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp80-90.html
   My bibliography  Save this article

Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock

Author

Listed:
  • Onwudili, Jude A.
  • Nouwe Edou, Danielle J.

Abstract

Catalytic hydrothermal decarboxylation of biomass-derived butyric acid can produce renewable biopropane as a direct drop-in replacement fuel for liquefied petroleum gases. In this present study, experimental results from a batch reactor have been used to develop a hypothetical continuous process to deliver 20,000 tonnes/year of biopropane, as base-case capacity, from 10 wt% aqueous butyric acid. A combination of process synthesis and ASPEN Hysys simulation have been used to formulate a process flowsheet, after equipment selection. The flowsheet has been used to carry out economic analyses, which show that the minimum selling price of biopropane is $2.51/kg without selling the CO2 co-product. However, with the incorporation of existing UK renewable energy incentives, the minimum selling price can reduce to $0.98/kg, which is cheaper than the current $1.25/kg selling price for fossil liquefied petroleum gases. Sensitivity analysis based on raw material costs and production capacities show profound influence on the minimum selling price, with strong potentials to making biopropane competitive without incentivisation, whereas the influence of selling CO2 is marginal. While this biopropane technology appears promising, it still requires more detailed technical and process data, life-cycle analysis and detail economic costings and testing at a pilot-scale prior to commercial exploitation.

Suggested Citation

  • Onwudili, Jude A. & Nouwe Edou, Danielle J., 2022. "Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock," Renewable Energy, Elsevier, vol. 184(C), pages 80-90.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:80-90
    DOI: 10.1016/j.renene.2021.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Seong-Heon & Kim, Juyeon & Han, Jeehoon & Lee, Daewon & Kim, Hyung Ju & Kim, Yong Tae & Cheng, Xun & Xu, Ye & Lee, Jechan & Kwon, Eilhann E., 2019. "Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Iram Razaq & Keith E. Simons & Jude A. Onwudili, 2021. "Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production," Energies, MDPI, vol. 14(11), pages 1-15, June.
    3. Juan-Rodrigo Bastidas-Oyanedel & Jens Ejbye Schmidt, 2018. "Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis," Energies, MDPI, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    2. Kelbert, Maikon & Machado, Thiago O. & Araújo, Pedro H.H. & Sayer, Claudia & de Oliveira, Débora & Maziero, Priscila & Simons, Keith E. & Carciofi, Bruno A.M., 2024. "Perspectives on biotechnological production of butyric acid from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    2. Kwon, Oseok & Han, Jeehoon, 2021. "Supply chain management of butyric acid-derived butanol: Stochastic approach," Applied Energy, Elsevier, vol. 297(C).
    3. Kwon, Oseok & Kim, Juyeon & Han, Jeehoon, 2022. "Organic waste derived biodiesel supply chain network: Deterministic multi-period planning model," Applied Energy, Elsevier, vol. 305(C).
    4. Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
    5. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    6. Park, Hoyoung & Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible thermochemical process for methanol production from kenaf," Energy, Elsevier, vol. 230(C).
    7. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    8. Ying, Zanyun & Qiu, Qianlinglin & Ye, Jiexu & Chen, Han & Zhao, Jingkai & Shen, Yao & Chu, Bei & Gao, Hanmin & Zhang, Shihan, 2024. "Mechanism, performance enhancement, and economic feasibility of CO2 microbial electrosynthesis systems: A data-driven analysis of research topics and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    10. Spyridoula Gerassimidou & Olwenn V. Martin & Gilenny Yamily Feliz Diaz & Chaoying Wan & Dimitrios Komilis & Eleni Iacovidou, 2022. "Systematic Evidence Mapping to Assess the Sustainability of Bioplastics Derived from Food Waste: Do We Know Enough?," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    11. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    12. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    15. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    16. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    19. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:80-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.