IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp864-874.html
   My bibliography  Save this article

Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution

Author

Listed:
  • Wang, Yulin
  • Wang, Xiaodong
  • Wang, Xiaoai
  • Liu, Tao
  • Zhu, Tingting
  • Liu, Shengchun
  • Qin, Yanzhou

Abstract

Understanding of droplet dynamic characteristics on gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cell is of great importance for cell performance improvement. This study comprehensively investigated droplet dynamic characteristics on fuel cell cathode GDL with gradient pore size distribution (GPSD). The influence of different pore sizes, GPSD and wettabilities of GDL on droplet dynamic characteristics is numerically evaluated by using the volume of fluid (VOF) method through the analysis of the interaction among the forces over droplet. Results indicate that droplet has a relatively short detachment time and a smaller detachment radius on superhydrophobic and superhydrophilic GDLs compared with on a moderately hydrophobic GDL regardless of pore size. Moreover, large pores can facilitate droplet detachment, but increase droplet detachment radius and pressure drop. Compared with uniform (U)PSD, for transverse (T)-GPSDs with a small pore distance at a relatively low airflow velocity or a large pore distance at a high airflow velocity, or for the longitudinal (L)-GPSD with a large pore in the upstream and a small pore in the downstream at a large pore distance, the droplet detachment time decreases by 34.3% and 25.2% with a reduction of pressure drop, respectively.

Suggested Citation

  • Wang, Yulin & Wang, Xiaodong & Wang, Xiaoai & Liu, Tao & Zhu, Tingting & Liu, Shengchun & Qin, Yanzhou, 2021. "Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution," Renewable Energy, Elsevier, vol. 178(C), pages 864-874.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:864-874
    DOI: 10.1016/j.renene.2021.06.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian, Qi-fei & Ma, Guang-qing & Qiu, Xiao-liang, 2014. "Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field," Renewable Energy, Elsevier, vol. 62(C), pages 129-136.
    2. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2017. "1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 203(C), pages 474-495.
    3. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    4. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    5. Niu, Zhiqiang & Bao, Zhiming & Wu, Jingtian & Wang, Yun & Jiao, Kui, 2018. "Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 443-450.
    6. Mengbo Ji & Zidong Wei, 2009. "A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-50, November.
    7. Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
    8. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    2. Wang, Yulin & Wang, Xiaoai & Fan, Yuanzhi & He, Wei & Guan, Jinglei & Wang, Xiaodong, 2022. "Numerical Investigation of Tapered Flow Field Configurations for Enhanced Polymer Electrolyte Membrane Fuel Cell Performance," Applied Energy, Elsevier, vol. 306(PA).
    3. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    4. Huang, Haozhong & Liu, Mingxin & Li, Xuan & Guo, Xiaoyu & Wang, Tongying & Li, Songwei & Lei, Han, 2022. "Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell," Energy, Elsevier, vol. 246(C).
    5. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    6. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    2. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    3. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    4. Chen, Xi & Wang, Chunxi & Xu, Jianghai & Long, Shichun & Chai, Fasen & Li, Wenbin & Song, Xingxing & Wang, Xuepeng & Wan, Zhongmin, 2023. "Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy," Applied Energy, Elsevier, vol. 343(C).
    5. Shao, Heng & Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lai, Xinmin, 2019. "Modeling and analysis of water droplet dynamics in the dead-ended anode gas channel for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 138(C), pages 842-851.
    6. Wong, A.K.C. & Ge, N. & Shrestha, P. & Liu, H. & Fahy, K. & Bazylak, A., 2019. "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 240(C), pages 549-560.
    7. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    8. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    9. Jiao, Daokuan & Jiao, Kui & Zhong, Shenghui & Du, Qing, 2022. "Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model," Applied Energy, Elsevier, vol. 316(C).
    10. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    11. Fan Yang & Xiaoming Xu & Yuehua Li & Dongfang Chen & Song Hu & Ziwen He & Yi Du, 2023. "A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification," Energies, MDPI, vol. 16(8), pages 1-24, April.
    12. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    14. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    15. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    16. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    17. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    18. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    19. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    20. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:864-874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.