IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp504-516.html
   My bibliography  Save this article

The evaluation of the snail track affected photovoltaic modules by different methods after 3-year operating in central Poland

Author

Listed:
  • Mik, Krzysztof
  • Bugaj, Marcin
  • Chaja, Patryk

Abstract

Recently, a presence of so-called snail tracks has been reported in many photovoltaic (PV) fields. The influence of the phenomena on PV modules performance is ambiguous. In this paper, the authors have performed a series of tests on 20 polycrystalline modules, which have been operating in a moderate, intermediate climate for over 3 years, to evaluate the snail tracks impact. Besides commonly used techniques like visual inspection, electroluminescence, illuminated thermography and current-voltage characteristic determination, dark thermography was also applied. The analysis of uncertainty and the statistical approach were used to obtain reliable results. The visual inspection and electroluminescence tests confirmed in case of 96% of snail tracks that they are strongly correlated with micro cracks. In addition, a novel classification of snail tracks is proposed. There is no evidence that presence and number of snail tracks influence photovoltaic module power. Furthermore, illuminated and dark thermography revealed no clear relation between temperature field and snail tracks occurrence.

Suggested Citation

  • Mik, Krzysztof & Bugaj, Marcin & Chaja, Patryk, 2021. "The evaluation of the snail track affected photovoltaic modules by different methods after 3-year operating in central Poland," Renewable Energy, Elsevier, vol. 163(C), pages 504-516.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:504-516
    DOI: 10.1016/j.renene.2020.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Aline M. & Melo, Fernando C. & Reis, Joaquim H. & Freitas, Luiz C.G., 2019. "The study and application of evaluation methods for photovoltaic modules under real operational conditions, in a region of the Brazilian Southeast," Renewable Energy, Elsevier, vol. 138(C), pages 1189-1204.
    2. Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
    3. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koester, L. & Lindig, S. & Louwen, A. & Astigarraga, A. & Manzolini, G. & Moser, D., 2022. "Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    3. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    4. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    5. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    6. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    8. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    9. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    10. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    11. Aline Kirsten Vidal de Oliveira & Mohammadreza Aghaei & Ricardo Rüther, 2022. "Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review," Energies, MDPI, vol. 15(6), pages 1-24, March.
    12. Pía Vásquez & Ignacia Devoto & Pablo Ferrada & Abel Taquichiri & Carlos Portillo & Rodrigo Palma-Behnke, 2021. "Inspection Data Collection Tool for Field Testing of Photovoltaic Modules in the Atacama Desert," Energies, MDPI, vol. 14(9), pages 1-24, April.
    13. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    14. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    15. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    16. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    17. Oscar Kwame Segbefia & Tor Oskar Sætre, 2022. "Investigation of the Temperature Sensitivity of 20-Years Old Field-Aged Photovoltaic Panels Affected by Potential Induced Degradation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    18. Hamid Iftikhar & Eduardo Sarquis & P. J. Costa Branco, 2021. "Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output?," Energies, MDPI, vol. 14(13), pages 1-29, June.
    19. Cubukcu, M. & Akanalci, A., 2020. "Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey," Renewable Energy, Elsevier, vol. 147(P1), pages 1231-1238.
    20. Muhammad Rameez Javed & Zain Shabbir & Furqan Asghar & Waseem Amjad & Faisal Mahmood & Muhammad Omer Khan & Umar Siddique Virk & Aashir Waleed & Zunaib Maqsood Haider, 2022. "An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision," Sustainability, MDPI, vol. 14(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:504-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.