IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2004-2018.html
   My bibliography  Save this article

Effect of the thermal storage dimensions on the performances of solar photovoltaic-thermal systems

Author

Listed:
  • Cirrincione, Laura
  • Malara, Cristina
  • Marino, Concettina
  • Nucara, Antonino
  • Peri, Giorgia
  • Pietrafesa, Matilde

Abstract

PV/T panels are innovative systems increasingly used in the building sector. As a matter of fact, in that context they allow a set of common problems to be addressed and often solved: lack of physical space and economic issues, always existing when PV and thermal panels are to be installed separately.

Suggested Citation

  • Cirrincione, Laura & Malara, Cristina & Marino, Concettina & Nucara, Antonino & Peri, Giorgia & Pietrafesa, Matilde, 2020. "Effect of the thermal storage dimensions on the performances of solar photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 162(C), pages 2004-2018.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2004-2018
    DOI: 10.1016/j.renene.2020.09.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gagliano, Antonio & Tina, Giuseppe M. & Nocera, Francesco & Grasso, Alfio Dario & Aneli, Stefano, 2019. "Description and performance analysis of a flexible photovoltaic/thermal (PV/T) solar system," Renewable Energy, Elsevier, vol. 137(C), pages 144-156.
    2. Mohammad Y. AbuGrain & Halil Z. Alibaba, 2017. "Optimizing Existing Multistory Building Designs towards Net-Zero Energy," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    3. Sanaye, Sepehr & Sarrafi, Ahmadreza, 2015. "Optimization of combined cooling, heating and power generation by a solar system," Renewable Energy, Elsevier, vol. 80(C), pages 699-712.
    4. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    5. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
    6. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    7. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    8. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    9. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    10. Bhattarai, Sujala & Kafle, Gopi Krishna & Euh, Seung-Hee & Oh, Jae-Heun & Kim, Dae Hyun, 2013. "Comparative study of photovoltaic and thermal solar systems with different storage capacities: Performance evaluation and economic analysis," Energy, Elsevier, vol. 61(C), pages 272-282.
    11. Wu, Shuang-Ying & Chen, Chen & Xiao, Lan, 2018. "Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel," Renewable Energy, Elsevier, vol. 125(C), pages 936-946.
    12. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    13. Rajput, Usman Jamil & Yang, Jun, 2018. "Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling," Renewable Energy, Elsevier, vol. 116(PA), pages 479-491.
    14. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    15. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    16. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    3. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    4. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    5. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    7. Widyolar, Bennett & Jiang, Lun & Brinkley, Jordyn & Hota, Sai Kiran & Ferry, Jonathan & Diaz, Gerardo & Winston, Roland, 2020. "Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics," Applied Energy, Elsevier, vol. 268(C).
    8. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    10. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    11. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    12. Bugaj, Marcin A. & Mik, Krzysztof, 2023. "Can PVT bend?: The elaboration of flexible hybrid photovoltaic thermal solar collector structure and testing methodology," Renewable Energy, Elsevier, vol. 215(C).
    13. Daniel John & Martin Kaltschmitt, 2022. "Control of a PVT-Heat-Pump-System Based on Reinforcement Learning–Operating Cost Reduction through Flow Rate Variation," Energies, MDPI, vol. 15(7), pages 1-19, April.
    14. Kamel Guedri & Mohamed Salem & Mamdouh El Haj Assad & Jaroon Rungamornrat & Fatimah Malek Mohsen & Yonis M. Buswig, 2022. "PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    15. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    16. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    17. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    18. Kim, Yu Jin & Entchev, Evgeuniy & Na, Sun Ik & Kang, Eun Chul & Baik, Young-Jin & Lee, Euy Joon, 2023. "Investigation of system optimization and control logic on a solar geothermal hybrid heat pump system based on integral effect test data," Energy, Elsevier, vol. 284(C).
    19. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    20. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2004-2018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.