IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp482-494.html
   My bibliography  Save this article

Technological and economic aspect of Refuse Derived Fuel pyrolysis

Author

Listed:
  • Rajca, Przemysław
  • Poskart, Anna
  • Chrubasik, Maciej
  • Sajdak, Marcin
  • Zajemska, Monika
  • Skibiński, Andrzej
  • Korombel, Anna

Abstract

The article presents the results of RDF (Refuse Derived Fuel) examination in order to use it for energy purpose. RDF material was subjected to thermogravimetric analysis. The TGA analysis confirmed the multi-component nature of tested material. It also indicated that the mixture consists of a minimum of 2 types of materials: biomass and thermoplastic polymers. The pyrolysis was conducted as a batch process with the use of a processing furnace supplied by the IZO Company. RDF sample was pyrolysed under 900 °C in a nitrogen atmosphere. Obtained char and gaseous sample, as well as raw material, were subjected to elemental and gas chromatographic analysis.

Suggested Citation

  • Rajca, Przemysław & Poskart, Anna & Chrubasik, Maciej & Sajdak, Marcin & Zajemska, Monika & Skibiński, Andrzej & Korombel, Anna, 2020. "Technological and economic aspect of Refuse Derived Fuel pyrolysis," Renewable Energy, Elsevier, vol. 161(C), pages 482-494.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:482-494
    DOI: 10.1016/j.renene.2020.07.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szewczyk, Dariusz & Jankowski, Radosław & Ślefarski, Rafał & Chmielewski, Jan, 2015. "Experimental study of the combustion process of gaseous fuels containing nitrogen compounds with the use of new, low-emission Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 92(P1), pages 3-12.
    2. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    3. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadija Sarquah & Satyanarayana Narra & Gesa Beck & Edward A. Awafo & Edward Antwi, 2022. "Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    2. Gałko, Grzegorz & Mazur, Izabela & Rejdak, Michał & Jagustyn, Barbara & Hrabak, Joanna & Ouadi, Miloud & Jahangiri, Hessam & Sajdak, Marcin, 2023. "Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications," Energy, Elsevier, vol. 263(PD).
    3. Marcela Taušová & Katarína Čulková & Peter Tauš & Lucia Domaracká & Andrea Seňová, 2021. "Evaluation of the Effective Material Use from the View of EU Environmental Policy Goals," Energies, MDPI, vol. 14(16), pages 1-14, August.
    4. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    5. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    6. Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Anna Biniek-Poskart & Józef Iwaszko & Andrzej Skibiński, 2023. "Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-19, September.
    7. Anna Poskart & Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Andrzej Skibiński, 2021. "Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Rafał Ślefarski & Joanna Jójka & Paweł Czyżewski & Michał Gołębiewski & Radosław Jankowski & Jarosław Markowski & Aneta Magdziarz, 2021. "Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products," Energies, MDPI, vol. 14(6), pages 1-15, March.
    9. Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Józef Iwaszko & Anna Biniek-Poskart & Andrzej Skibiński & Sławomir Morel & Paweł Niegodajew, 2022. "Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis," Energies, MDPI, vol. 15(7), pages 1-17, April.
    10. Sun, Ce & Li, Wenlong & Chen, Xiaojian & Li, Changxin & Tan, Haiyan & Zhang, Yanhua, 2021. "Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour," Renewable Energy, Elsevier, vol. 171(C), pages 254-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    2. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    3. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Joanna Jójka & Rafał Ślefarski, 2021. "Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition," Energies, MDPI, vol. 14(3), pages 1-19, January.
    5. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    6. Szewczyk, Dariusz & Ślefarski, Rafał & Jankowski, Radosław, 2017. "Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 121(C), pages 716-725.
    7. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    8. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    9. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    10. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    11. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Guizani, Chamseddine & Haddad, Khouloud & Jeguirim, Mejdi & Colin, Baptiste & Limousy, Lionel, 2016. "Combustion characteristics and kinetics of torrefied olive pomace," Energy, Elsevier, vol. 107(C), pages 453-463.
    13. Woo, Mino & Choi, Byung Chul & Ghoniem, Ahmed F., 2016. "Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer," Energy, Elsevier, vol. 114(C), pages 961-972.
    14. Octávio Alves & Bruno Garcia & Bruna Rijo & Gonçalo Lourinho & Catarina Nobre, 2022. "Market Opportunities in Portugal for the Water-and-Waste Sector Using Sludge Gasification," Energies, MDPI, vol. 15(18), pages 1-16, September.
    15. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    16. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    17. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    19. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    20. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:482-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.