IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp754-766.html

Daylighting performance simulation and analysis of translucent concrete building envelopes

Author

Listed:
  • Su, Xiaosong
  • Zhang, Ling
  • Liu, Zhongbing
  • Luo, Yongqiang
  • Lian, Jinbu
  • Liang, Ping

Abstract

A novel optical fiber (OF) embedded building envelope, namely translucent concrete (TC), was proposed and popularized for its light transmission property and unique artistic features, but there is still a lack of in-depth research on its daylighting performance analysis. To reveal the impacts of multi-factors on TC daylighting performance, an optical model of TC was established based on a ray-tracing method. In the model validation, both the simulated transmittance of OFs and illuminance of translucent concrete were in a good agreement with the experimental results. The simulation results showed when the numerical aperture (NA) of the OFs increased from 0.51 to 0.70, the annual average luminous flux of TC under seven cities conditions could be enhanced by up to 40.62%. In terms of effective illuminance, the optimum fiber volume ratio of the seven cities was determined, respectively. Besides, it was found that the core-cladding interface losses could lead to a relative deviation over 5% when the length of 1-mm OFs with 0.51 NA exceeded 259 mm, and the deviation could be larger with the decrease in diameter of OFs and the increase both in length and NA of OFs.

Suggested Citation

  • Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Lian, Jinbu & Liang, Ping, 2020. "Daylighting performance simulation and analysis of translucent concrete building envelopes," Renewable Energy, Elsevier, vol. 154(C), pages 754-766.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:754-766
    DOI: 10.1016/j.renene.2020.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    2. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    3. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    4. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    5. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    6. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
    2. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    3. Song, Jifeng & Wu, Zhaoxuan & Wang, Juntao & Zhang, Kexin & Wang, Kai & Liu, Kunhao & Duan, Liqiang & Hou, Hongjuan, 2021. "Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches," Renewable Energy, Elsevier, vol. 180(C), pages 1391-1404.
    4. Kunhao Liu & Lianglin Zou & Yuanlong Li & Kai Wang & Haiyu Wang & Jifeng Song, 2023. "Measurement and Analysis of Light Leakage in Plastic Optical Fiber Daylighting System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    3. Guoqing He & Zhewen Fan & Yuan Meng & Linfeng Yao & Changqing Ye, 2025. "An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons," Energies, MDPI, vol. 18(13), pages 1-21, June.
    4. Wang, Yiting & Hu, Xuan & Gu, Tao & Ji, Jie & Li, Niansi & Yu, Bendong, 2024. "The design, experimental and numerical study on a novel double-skin glass ventilation wall with PV blind integrated with thermal catalytic materials for synergistic energy generation and air purificat," Energy, Elsevier, vol. 313(C).
    5. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    6. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    7. Arabi, Pouria & Hamidpour, Mahmoud Reza & Yaghoubi, Mahmood & Arabi, Faraz, 2023. "Computational analysis of blind performance on natural ventilated double skin façade in winter," Energy, Elsevier, vol. 268(C).
    8. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    9. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Li, Houpei & Wang, Meng & Zhang, Fujia & Ji, Jie & Song, Aotian, 2023. "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," Renewable Energy, Elsevier, vol. 205(C), pages 1040-1056.
    10. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    11. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    13. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    14. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    15. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    16. Vincenzo Muteri & Francesco Guarino & Sonia Longo & Letizia Bua & Maurizio Cellura & Daniele Testa & Marco Bonzi, 2022. "An Innovative Photovoltaic Luminescent Solar Concentrator Window: Energy and Environmental Aspects," Sustainability, MDPI, vol. 14(7), pages 1-31, April.
    17. Li, Yilin & Darkwa, Jo & Kokogiannakis, Georgios & Su, Weiguang, 2019. "Phase change material blind system for double skin façade integration: System development and thermal performance evaluation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Jaesung Park & Myunghwan Oh & Chul-sung Lee, 2019. "Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method," Energies, MDPI, vol. 12(19), pages 1-19, September.
    19. Yang, Jianming & Zhuang, Haojie & Liang, Yuying & Cen, Jian & Zhang, Xianyong & Li, Li & Li, Peng & Qiu, Runlong, 2024. "A novel vacuum-photovoltaic glazing integrated thermoelectric cooler/warmer for environmental adaptation: thermal performance modelling," Renewable Energy, Elsevier, vol. 229(C).
    20. Tran Thi Nguyet Minh & Hanh-Thi Hong Hoang & Hyung Sik Nam & Anas S. Alamoush & Phan Anh Duong, 2025. "Revisiting Port Decarbonization for Advancing a Sustainable Maritime Industry: Insights from Bibliometric Review," Sustainability, MDPI, vol. 17(10), pages 1-36, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:754-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.