IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1310-1316.html
   My bibliography  Save this article

Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries

Author

Listed:
  • Liao, Weineng
  • Jiang, Fengjing
  • Zhang, Yue
  • Zhou, Xinjie
  • He, Zongqi

Abstract

Redox flow battery has become one of the most promising technologies for large-scale energy storage. However, as a key component, bipolar plate is still under development to achieve high electrical conductivity and sufficient flexural strength simultaneously. With this purpose, an innovative low-carbon-content bipolar plate with hybrid conductive materials of graphene, carbon fibers and graphite powders are prepared. Morphology, flexural strength, electrical conductivity, corrosion resistance, vanadium permeability and single cell performance are studied and discussed. Extremely low area specific resistance (5.0 mΩ cm2) and high in-plane electrical conductivity (420.6 S cm−1) are achieved at an ultra-low carbon content of 25 wt%. The voltage efficiency and energy efficiency of the vanadium redox flow battery unit cell reach as high as 88.0% and 85.9%, respectively, at 100 mA cm−2. The low-carbon-content bipolar plate turns to be promising for the massive application in redox flow batteries.

Suggested Citation

  • Liao, Weineng & Jiang, Fengjing & Zhang, Yue & Zhou, Xinjie & He, Zongqi, 2020. "Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries," Renewable Energy, Elsevier, vol. 152(C), pages 1310-1316.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1310-1316
    DOI: 10.1016/j.renene.2020.01.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Peak load shifting with energy storage and price-based control system," Energy, Elsevier, vol. 92(P3), pages 505-514.
    2. Han, Xiaojuan & Ji, Tianming & Zhao, Zekun & Zhang, Hao, 2015. "Economic evaluation of batteries planning in energy storage power stations for load shifting," Renewable Energy, Elsevier, vol. 78(C), pages 643-647.
    3. Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamilselvi, R. & Lekshmi, G.S. & Padmanathan, N. & Selvaraj, V. & Bazaka, O. & Levchenko, I. & Bazaka, K. & Mandhakini, M., 2022. "NiFe2O4 / rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation," Renewable Energy, Elsevier, vol. 181(C), pages 1386-1401.
    2. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    3. Mao, Xiaoyu & Li, Yifan & Hu, Xiufeng & Tian, Runping & Yu, Wei, 2023. "Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability," Applied Energy, Elsevier, vol. 338(C).
    4. Igor Iwakiri & Tiago Antunes & Helena Almeida & João P. Sousa & Rita Bacelar Figueira & Adélio Mendes, 2021. "Redox Flow Batteries: Materials, Design and Prospects," Energies, MDPI, vol. 14(18), pages 1-45, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Hau, Lee Cheun & Lim, Yun Seng & Liew, Serena Miao San, 2020. "A novel spontaneous self-adjusting controller of energy storage system for maximum demand reductions under penetration of photovoltaic system," Applied Energy, Elsevier, vol. 260(C).
    3. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    4. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    5. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    6. Sheng-Qiang Gu & Yong Liu & Hao Yu, 2023. "Power battery recycling strategy with government rewards and punishments," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 501-526, March.
    7. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    8. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    9. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    10. Qiujie Sun & Jingyu Zhou & Zhou Lan & Xiangyang Ma, 2023. "The Economic Influence of Energy Storage Construction in the Context of New Power Systems," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    11. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    12. Shafiee, Soroush & Zamani-Dehkordi, Payam & Zareipour, Hamidreza & Knight, Andrew M., 2016. "Economic assessment of a price-maker energy storage facility in the Alberta electricity market," Energy, Elsevier, vol. 111(C), pages 537-547.
    13. Bonhyun Gu & Heeyun Lee & Changbeom Kang & Donghwan Sung & Sanghoon Lee & Sunghyun Yun & Sung Kwan Park & Gu-Young Cho & Namwook Kim & Suk Won Cha, 2020. "Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System," Energies, MDPI, vol. 13(7), pages 1-15, April.
    14. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    16. Wiesheu, Michael & Rutešić, Luka & Shukhobodskiy, Alexander Alexandrovich & Pogarskaia, Tatiana & Zaitcev, Aleksandr & Colantuono, Giuseppe, 2021. "RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings," Renewable Energy, Elsevier, vol. 179(C), pages 1036-1048.
    17. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    18. Kyoung-Ho Lee & Moon-Chang Joo & Nam-Choon Baek, 2015. "Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods," Energies, MDPI, vol. 8(9), pages 1-21, August.
    19. Motalleb, Mahdi & Siano, Pierluigi & Ghorbani, Reza, 2019. "Networked Stackelberg Competition in a Demand Response Market," Applied Energy, Elsevier, vol. 239(C), pages 680-691.
    20. Guo, Zhen & Pu, Ziqiang & Du, Wenliao & Wang, Hongcao & Li, Chuan, 2022. "Improved adversarial learning for fault feature generation of wind turbine gearbox," Renewable Energy, Elsevier, vol. 185(C), pages 255-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1310-1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.