IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp508-522.html
   My bibliography  Save this article

Residual load probabilistic forecast for reserve assessment: A real case study

Author

Listed:
  • Pierro, Marco
  • De Felice, Matteo
  • Maggioni, Enrico
  • Moser, David
  • Perotto, Alessandro
  • Spada, Francesco
  • Cornaro, Cristina

Abstract

Distributed generation from wind and solar acts on regional electric demand as a reduced consumption, giving rise to a “load shadowing effect”. The net load becomes much more difficult to predict due to its dependence on the meteorological conditions. As a consequence, the growing penetration of variable generation increases the imbalance between demand and scheduled supply (net load forecast) and the reserve margins (net load uncertainty).

Suggested Citation

  • Pierro, Marco & De Felice, Matteo & Maggioni, Enrico & Moser, David & Perotto, Alessandro & Spada, Francesco & Cornaro, Cristina, 2020. "Residual load probabilistic forecast for reserve assessment: A real case study," Renewable Energy, Elsevier, vol. 149(C), pages 508-522.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:508-522
    DOI: 10.1016/j.renene.2019.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perez, Richard & Rábago, Karl R. & Trahan, Mike & Rawlings, Lyle & Norris, Ben & Hoff, Tom & Putnam, Morgan & Perez, Marc, 2016. "Achieving very high PV penetration – The need for an effective electricity remuneration framework and a central role for grid operators," Energy Policy, Elsevier, vol. 96(C), pages 27-35.
    2. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    3. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
    4. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    5. Emmanuel, Michael & Rayudu, Ramesh, 2017. "Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 207-224.
    6. Wu, Jing & Botterud, Audun & Mills, Andrew & Zhou, Zhi & Hodge, Bri-Mathias & Heaney, Mike, 2015. "Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study," Energy, Elsevier, vol. 85(C), pages 1-9.
    7. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    8. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    2. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    3. Marco Pierro & David Moser & Richard Perez & Cristina Cornaro, 2020. "The Value of PV Power Forecast and the Paradox of the “Single Pricing” Scheme: The Italian Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    4. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Marco Pierro & Fabio Romano Liolli & Damiano Gentili & Marcello Petitta & Richard Perez & David Moser & Cristina Cornaro, 2022. "Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    2. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
    5. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    6. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    7. Marco Pierro & David Moser & Richard Perez & Cristina Cornaro, 2020. "The Value of PV Power Forecast and the Paradox of the “Single Pricing” Scheme: The Italian Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    8. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    9. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Probabilistic solar power forecasting based on weather scenario generation," Applied Energy, Elsevier, vol. 266(C).
    10. John Boland & Sleiman Farah, 2021. "Probabilistic Forecasting of Wind and Solar Farm Output," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. Munkhammar, Joakim & van der Meer, Dennis & Widén, Joakim, 2021. "Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model," Applied Energy, Elsevier, vol. 282(PA).
    12. Thomas Carrière & Rodrigo Amaro e Silva & Fuqiang Zhuang & Yves-Marie Saint-Drenan & Philippe Blanc, 2021. "A New Approach for Satellite-Based Probabilistic Solar Forecasting with Cloud Motion Vectors," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    14. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    15. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Carpentieri, A. & Folini, D. & Nerini, D. & Pulkkinen, S. & Wild, M. & Meyer, A., 2023. "Intraday probabilistic forecasts of surface solar radiation with cloud scale-dependent autoregressive advection," Applied Energy, Elsevier, vol. 351(C).
    17. Hugo Bezerra Menezes Leite & Hamidreza Zareipour, 2023. "Six Days Ahead Forecasting of Energy Production of Small Behind-the-Meter Solar Sites," Energies, MDPI, vol. 16(3), pages 1-14, February.
    18. Tawsif Ahmad & Ning Zhou & Ziang Zhang & Wenyuan Tang, 2024. "Enhancing Probabilistic Solar PV Forecasting: Integrating the NB-DST Method with Deterministic Models," Energies, MDPI, vol. 17(10), pages 1-19, May.
    19. Nghitevelekwa, K. & Bansal, R.C., 2018. "A review of generation dispatch with large-scale photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 615-624.
    20. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:508-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.