IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1271-1281.html
   My bibliography  Save this article

Planning and assessment of an off-grid power supply system for small settlements

Author

Listed:
  • Tsiaras, Evangelos
  • Papadopoulos, Demetrios N.
  • Antonopoulos, Constantinos N.
  • Papadakis, Vagelis G.
  • Coutelieris, Frank A.

Abstract

A novel methodology for analyzing hybrid wind turbine-photovoltaic off-grid systems with battery storage is presented in this work. To support off-grid operation, small settlements were chosen as case studies for these autonomous hybrid systems. Μeteorological, demographic, geographical, geospatial, land use and load data with the design and implementation of off-grid power plants were used. The study aims at further supporting and improving off-grid hybrid energy systems in terms of design, analysis and integration, while a life-cycle analysis for the proposed systems was performed to quantify the relative environmental impact, as well. The findings show that the implementation of autonomous energy production by renewable energy systems for off-grid small settlements, based on the presented methodology, is feasible.

Suggested Citation

  • Tsiaras, Evangelos & Papadopoulos, Demetrios N. & Antonopoulos, Constantinos N. & Papadakis, Vagelis G. & Coutelieris, Frank A., 2020. "Planning and assessment of an off-grid power supply system for small settlements," Renewable Energy, Elsevier, vol. 149(C), pages 1271-1281.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1271-1281
    DOI: 10.1016/j.renene.2019.10.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2018. "Success and failure in the political economy of solar electrification: Lessons from World Bank Solar Home System (SHS) projects in Sri Lanka and Indonesia," Energy Policy, Elsevier, vol. 123(C), pages 482-493.
    2. Walker, Chad & Stephenson, Laura & Baxter, Jamie, 2018. "“His main platform is ‘stop the turbines’ ”: Political discourse, partisanship and local responses to wind energy in Canada," Energy Policy, Elsevier, vol. 123(C), pages 670-681.
    3. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    4. Boute, Anatole, 2016. "Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1029-1037.
    5. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    6. Desideri, Umberto & Proietti, Stefania & Zepparelli, Francesco & Sdringola, Paolo & Bini, Silvia, 2012. "Life Cycle Assessment of a ground-mounted 1778kWp photovoltaic plant and comparison with traditional energy production systems," Applied Energy, Elsevier, vol. 97(C), pages 930-943.
    7. Ghenai, Chaouki & Albawab, Mona & Bettayeb, Maamar, 2020. "Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method," Renewable Energy, Elsevier, vol. 146(C), pages 580-597.
    8. Prodromidis, G.N. & Coutelieris, F.A., 2011. "A comparative feasibility study of stand-alone and grid connected RES-based systems in several Greek Islands," Renewable Energy, Elsevier, vol. 36(7), pages 1957-1963.
    9. Fleck, Brian & Huot, Marc, 2009. "Comparative life-cycle assessment of a small wind turbine for residential off-grid use," Renewable Energy, Elsevier, vol. 34(12), pages 2688-2696.
    10. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    11. Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Spanos, Constantine & Turney, Damon E. & Fthenakis, Vasilis, 2015. "Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 478-494.
    14. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    15. Prinsloo, Gerro & Mammoli, Andrea & Dobson, Robert, 2016. "Discrete cogeneration optimization with storage capacity decision support for dynamic hybrid solar combined heat and power systems in isolated rural villages," Energy, Elsevier, vol. 116(P1), pages 1051-1064.
    16. Adams, Samuel & Klobodu, Edem Kwame Mensah & Opoku, Eric Evans Osei, 2016. "Energy consumption, political regime and economic growth in sub-Saharan Africa," Energy Policy, Elsevier, vol. 96(C), pages 36-44.
    17. Chaouki Ghenai, 2012. "Life Cycle Analysis of Wind Turbine," Chapters, in: Chaouki Ghenai (ed.), Sustainable Development - Energy, Engineering and Technologies - Manufacturing and Environment, IntechOpen.
    18. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying, 2019. "The profitability of onshore wind and solar PV power projects in China - A comparative study," Energy Policy, Elsevier, vol. 132(C), pages 404-417.
    19. Abbassi, Abdelkader & Dami, Mohamed Ali & Jemli, Mohamed, 2017. "A statistical approach for hybrid energy storage system sizing based on capacity distributions in an autonomous PV/Wind power generation system," Renewable Energy, Elsevier, vol. 103(C), pages 81-93.
    20. Mouna Lamnadi & Mourad Trihi & Abdelkader Boulezhar & Badre Bossoufi, 2019. "Optimal design of stand-alone hybrid power system using wind and solar energy sources," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 15(2/3), pages 280-300.
    21. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    22. Abdullah, M.O. & Yung, V.C. & Anyi, M. & Othman, A.K. & Ab. Hamid, K.B. & Tarawe, J., 2010. "Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter," Energy, Elsevier, vol. 35(2), pages 639-646.
    23. Nikitidou, E. & Kazantzidis, A. & Tzoumanikas, P. & Salamalikis, V. & Bais, A.F., 2015. "Retrieval of surface solar irradiance, based on satellite-derived cloud information, in Greece," Energy, Elsevier, vol. 90(P1), pages 776-783.
    24. Sheinbaum-Pardo, Claudia & Ruiz-Mendoza, Belizza Janet & Rodríguez-Padilla, Víctor, 2012. "Mexican energy policy and sustainability indicators," Energy Policy, Elsevier, vol. 46(C), pages 278-283.
    25. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    26. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    27. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Tausif & Aghaloo, Kamaleddin & Chiu, Yie-Ru & Ahmad, Munir, 2022. "Lessons learned from the COVID-19 pandemic in planning the future energy systems of developing countries using an integrated MCDM approach in the off-grid areas of Bangladesh," Renewable Energy, Elsevier, vol. 189(C), pages 25-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozoemena, Matthew & Hasan, Reaz & Cheung, Wai Ming, 2016. "Analysis of technology improvement opportunities for a 1.5 MW wind turbine using a hybrid stochastic approach in life cycle assessment," Renewable Energy, Elsevier, vol. 93(C), pages 369-382.
    2. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    3. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    5. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    6. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    7. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    8. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    9. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    10. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    11. Mendecka, Barbara & Tribioli, Laura & Cozzolino, Raffaello, 2020. "Life Cycle Assessment of a stand-alone solar-based polygeneration power plant for a commercial building in different climate zones," Renewable Energy, Elsevier, vol. 154(C), pages 1132-1143.
    12. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Rashedi, A. & Sridhar, I. & Tseng, K.J., 2013. "Life cycle assessment of 50MW wind firms and strategies for impact reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 89-101.
    14. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    15. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    18. van Os, Herman W.A. & Herber, Rien & Scholtens, Bert, 2014. "Not Under Our Back Yards? A case study of social acceptance of the Northern Netherlands CCS initiative," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 923-942.
    19. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    20. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1271-1281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.