IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp326-335.html
   My bibliography  Save this article

Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant

Author

Listed:
  • Trivedi, Tanmay
  • Jain, Deepti
  • Mulla, Nousin S.S.
  • Mamatha, S.S.
  • Damare, Samir R.
  • Sreepada, R.A.
  • Kumar, Sanjay
  • Gupta, Vishal

Abstract

In this study, the changes in biomass productivity, wastewater treatment, lipid production and biodiesel properties from mixotrophic cultivation of Chlorella vulgaris NIOCCV in untreated wastewater from a fish processing plant over F/2 medium was reported. A significant 6-fold increase in biomass productivity (257.87 ± 1.27 mg·L−1·d−1) and 1.3-fold in lipid accumulation (48%) was recorded for C. vulgaris NIOCCV cultivated in wastewater enrichment of 15% (v/v) over F/2 medium. The biomass productivity was significantly higher in wastewater enrichment up to 50% (v/v) and salt concentration 5% (w/v) than in F/2 medium. The fatty acid methyl esters based theoretical calculation for biodiesel properties from the microalgal biomass cultivated in wastewater enriched medium were found superior to the same from the F/2 medium. The resultant biodiesel properties (CN value, oxidation stability, and kinematic viscosity) were in compliance to both the ASTM D6751 and EN 14214 fuel standards. The cultivation of C. vulgaris NIOCCV in wastewater resulted in significant decrease in nutrient levels is another advantage. Therefore, C. vulgaris NIOCCV can effectively be cultivated in untreated fish processing industry wastewater without addition of nutrients. Further, C. vulgaris NIOCCV can efficiently be utilized as bioresource for biodiesel production.

Suggested Citation

  • Trivedi, Tanmay & Jain, Deepti & Mulla, Nousin S.S. & Mamatha, S.S. & Damare, Samir R. & Sreepada, R.A. & Kumar, Sanjay & Gupta, Vishal, 2019. "Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant," Renewable Energy, Elsevier, vol. 139(C), pages 326-335.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:326-335
    DOI: 10.1016/j.renene.2019.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abomohra, Abd El-Fatah & El-Sheekh, Mostafa & Hanelt, Dieter, 2017. "Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock," Renewable Energy, Elsevier, vol. 101(C), pages 1266-1272.
    2. Lam, Man Kee & Yusoff, Mohammad Iqram & Uemura, Yoshimitsu & Lim, Jun Wei & Khoo, Choon Gek & Lee, Keat Teong & Ong, Hwai Chyuan, 2017. "Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies," Renewable Energy, Elsevier, vol. 103(C), pages 197-207.
    3. Hwang, Jae-Hoon & Kabra, Akhil N. & Kim, Jung Rae & Jeon, Byong-Hun, 2014. "Photoheterotrophic microalgal hydrogen production using acetate- and butyrate-rich wastewater effluent," Energy, Elsevier, vol. 78(C), pages 887-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeong Hwang Tan & Mee Kin Chai & Ji Yu Na & Ling Shing Wong, 2023. "Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater," Sustainability, MDPI, vol. 15(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Lakshmikandan, M. & Murugesan, A.G. & Wang, Shuang & El-Fatah Abomohra, Abd, 2021. "Optimization of acid hydrolysis on the green seaweed Valoniopsis pachynema and approach towards mixotrophic microalgal biomass and lipid production," Renewable Energy, Elsevier, vol. 164(C), pages 1052-1061.
    3. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    4. Bohwa Kim & Ramasamy Praveenkumar & Eunji Choi & Kyubock Lee & Sang Goo Jeon & You-Kwan Oh, 2018. "Prospecting for Oleaginous and Robust Chlorella spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production," Energies, MDPI, vol. 11(8), pages 1-13, August.
    5. Mohd Yasin, Nazlina Haiza & Ikegami, Azusa & Wood, Thomas K. & Yu, Chang-Ping & Haruyama, Tetsuya & Takriff, Mohd Sobri & Maeda, Toshinari, 2017. "Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge," Applied Energy, Elsevier, vol. 202(C), pages 399-407.
    6. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    7. El-Sheekh, Mostafa & Abomohra, Abd El-Fatah & Eladel, Hamed & Battah, Mohamed & Mohammed, Soha, 2018. "Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production," Renewable Energy, Elsevier, vol. 129(PA), pages 114-120.
    8. Nida Khan & Kumarasamy Sudhakar & Rizalman Mamat, 2021. "Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality," Sustainability, MDPI, vol. 13(22), pages 1-30, November.
    9. Rosmahadi, Nurulfarah Adilah & Rawindran, Hemamalini & Lim, Jun Wei & Kiatkittipong, Worapon & Assabumrungrat, Suttichai & Najdanovic-Visak, Vesna & Wang, Jiawei & Chidi, Boredi Silas & Ho, Chii-Dong , 2022. "Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    11. Baeyens, Jan & Zhang, Huili & Nie, Jiapei & Appels, Lise & Dewil, Raf & Ansart, Renaud & Deng, Yimin, 2020. "Reviewing the potential of bio-hydrogen production by fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    13. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    14. Hwang, Jae-Hoon & Church, Jared & Lim, Jaewon & Lee, Woo Hyoung, 2018. "Photosynthetic biohydrogen production in a wastewater environment and its potential as renewable energy," Energy, Elsevier, vol. 149(C), pages 222-229.
    15. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
    16. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    17. Purushothaman Paneerselvam & Gnanamoorthi Venkadesan & Mebin Samuel Panithasan & Gurusamy Alaganathan & Sławomir Wierzbicki & Maciej Mikulski, 2021. "Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend," Energies, MDPI, vol. 14(10), pages 1-15, May.
    18. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    19. Zhang, Lijie & Cheng, Juan & Pei, Haiyan & Pan, Jianqiang & Jiang, Liqun & Hou, Qingjie & Han, Fei, 2018. "Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production," Renewable Energy, Elsevier, vol. 115(C), pages 276-287.
    20. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:326-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.