IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp793-804.html
   My bibliography  Save this article

Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems

Author

Listed:
  • Chen, Youming
  • Pan, Bingbing
  • Zhang, Xunshui
  • Du, Ciyuan

Abstract

Ground-coupled heat pump (GCHP) system is one of the important renewable energy systems. Vertical ground heat exchanger (GHE) is the most expensive part of GCHP systems. Fast and accurate computation of fluid and ground temperatures is desired for the long-term prediction of GCHP performance and the optimal sizing of borehole fields. In this paper, a thermal response factors, δ-function is proposed for computing fluid and ground temperatures of borehole fields. δ-function is a non-dimensional ground temperature response and an accurate analytical solution of finite line source model to a unit rectangular heat pulse. Numerical computation of δ-function is quite fast for its small integral range. The accuracy of δ-function is validated by the simulation results of g-function. The comparative computations are conducted for the hourly simulation of various long periods by combining the g- and δ-functions with both time and spectral domain methods. It is found that the combination of δ-function with fast Fourier transform (FFT) provides dramatically fast computing speed. Therefore, the computation approach of δ-function combined with FFT is the most suitable to quickly and accurately compute the fluid and ground temperatures in parameterized design and long-term simulation of vertical GHE and GCHP systems.

Suggested Citation

  • Chen, Youming & Pan, Bingbing & Zhang, Xunshui & Du, Ciyuan, 2019. "Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems," Renewable Energy, Elsevier, vol. 136(C), pages 793-804.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:793-804
    DOI: 10.1016/j.renene.2018.12.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Ciyuan & Chen, Youming, 2011. "An average fluid temperature to estimate borehole thermal resistance of ground heat exchanger," Renewable Energy, Elsevier, vol. 36(6), pages 1880-1885.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Marcotte, D. & Pasquier, P. & Sheriff, F. & Bernier, M., 2010. "The importance of axial effects for borehole design of geothermal heat-pump systems," Renewable Energy, Elsevier, vol. 35(4), pages 763-770.
    4. Lamarche, Louis, 2009. "A fast algorithm for the hourly simulations of ground-source heat pumps using arbitrary response factors," Renewable Energy, Elsevier, vol. 34(10), pages 2252-2258.
    5. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, A. & Pasquier, P., 2021. "A successive flux estimation method for rapid g-function construction of small to large-scale ground heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 359-368.
    2. Nguyen, A., 2021. "Determination of the ground source heat pump system capacity that ensures the longevity of a specified ground heat exchanger field," Renewable Energy, Elsevier, vol. 169(C), pages 799-808.
    3. Zhang, Fangfang & Fang, Liang & Jia, Linrui & Man, Yi & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2021. "A dimension reduction algorithm for numerical simulation of multi-borehole heat exchangers," Renewable Energy, Elsevier, vol. 179(C), pages 2235-2245.
    4. Le Minh Nhut & Waseem Raza & Youn Cheol Park, 2020. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    2. Lazzarotto, Alberto, 2014. "A network-based methodology for the simulation of borehole heat storage systems," Renewable Energy, Elsevier, vol. 62(C), pages 265-275.
    3. Pasquier, Philippe & Marcotte, Denis, 2012. "Short-term simulation of ground heat exchanger with an improved TRCM," Renewable Energy, Elsevier, vol. 46(C), pages 92-99.
    4. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    5. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    6. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    7. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
    8. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    9. Beaudry, Gabrielle & Pasquier, Philippe & Marcotte, Denis & Zarrella, Angelo, 2022. "Flow rate control in standing column wells: A flexible solution for reducing the energy use and peak power demand of the built environment," Applied Energy, Elsevier, vol. 313(C).
    10. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    11. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.
    12. Beier, Richard A., 2011. "Vertical temperature profile in ground heat exchanger during in-situ test," Renewable Energy, Elsevier, vol. 36(5), pages 1578-1587.
    13. Choi, Jung Chan & Park, Joonsang & Lee, Seung Rae, 2013. "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays," Renewable Energy, Elsevier, vol. 52(C), pages 230-240.
    14. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    15. Beier, Richard A. & Spitler, Jeffrey D., 2016. "Weighted average of inlet and outlet temperatures in borehole heat exchangers," Applied Energy, Elsevier, vol. 174(C), pages 118-129.
    16. Zhang, Changxing & Wang, Yusheng & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2018. "Computational methods for ground thermal response of multiple borehole heat exchangers: A review," Renewable Energy, Elsevier, vol. 127(C), pages 461-473.
    17. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    18. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    19. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    20. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:793-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.