IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp25-43.html
   My bibliography  Save this article

Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system

Author

Listed:
  • Karthick, Krishnadass
  • Suresh, S.
  • Singh, Harjit
  • Joy, Grashin C
  • Dhanuskodi, R.

Abstract

Thermal interface resistance of Thermoelectric Generator (TEG) plays a vital role in power production. Improving surface finish of contact surfaces, applying pressure between the contact surfaces and use of Thermal Interface Material (TIM) are few methods of reducing thermal resistance and thereby improving the efficiency of TEG. There is a need to evaluate the influence of these methods and use them optimally for TEG system. Experiments were carried out to study the influence of parameters such as thermal conductivity of TIM, contact pressure, surface roughness and heat source temperature on the voltage and power outputs from TEG. Experimental results are validated with simulations using mathematical heat transfer model and COMSOLTM Multiphysics numerical model. Appreciable agreement is seen between the experimental observations and model outputs. Experimental and model results indicate 0.6 W/mK as optimum thermal conductivity for TIM material. Hence, use of costly TIMs like MWCNT (Multi Wall Carbon Nano Tube) and copper nanoparticles may not be required for the selected application. The contact pressure and surface roughness have appreciable influence when air is used as TIM. These factors have insignificant influence for TIMs with higher thermal conductivity. Increase in heat source temperature increases voltage and power output of TEG.

Suggested Citation

  • Karthick, Krishnadass & Suresh, S. & Singh, Harjit & Joy, Grashin C & Dhanuskodi, R., 2019. "Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system," Renewable Energy, Elsevier, vol. 134(C), pages 25-43.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:25-43
    DOI: 10.1016/j.renene.2018.10.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    2. Astrain, D. & Vián, J.G. & Martínez, A. & Rodríguez, A., 2010. "Study of the influence of heat exchangers' thermal resistances on a thermoelectric generation system," Energy, Elsevier, vol. 35(2), pages 602-610.
    3. Mohebali, Milad & Liu, Yin & Tayebi, Lobat & Krasinski, Jerzy S. & Vashaee, Daryoosh, 2015. "Thermoelectric figure of merit of bulk FeSi2–Si0.8Ge0.2 nanocomposite and a comparison with β-FeSi2," Renewable Energy, Elsevier, vol. 74(C), pages 940-947.
    4. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    5. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elankovan, R. & Suresh, S. & Karthick, Krishnadass & Hussain, Mohammed Muaaz M.D. & Chandramohan, V.P., 2019. "Evaluation of thermoelectric power generated through waste heat recovery from long ducts and different thermal system configurations," Energy, Elsevier, vol. 185(C), pages 477-491.
    2. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    3. Zheng, Liang Jun & Lim, Sungmook & Kim, Na Kyong & Kang, Dong Hee & Youn, Young Jik & Lee, Wonoh & Kang, Hyun Wook, 2020. "Experimental study of a thin water-film evaporative cooling system to enhance the energy conversion efficiency of a thermoelectric device," Energy, Elsevier, vol. 211(C).
    4. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    2. Weng, Chien-Chou & Huang, Mei-Jiau, 2014. "A study of using a thermoelectric generator to harvest energy from a table lamp," Energy, Elsevier, vol. 76(C), pages 788-798.
    3. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    4. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    5. Wang, Chien-Chang & Hung, Chen-I & Chen, Wei-Hsin, 2012. "Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization," Energy, Elsevier, vol. 39(1), pages 236-245.
    6. Abdelrahman Lashin & Mohammad Al Turkestani & Mohamed Sabry, 2019. "Concentrated Photovoltaic/Thermal Hybrid System Coupled with a Thermoelectric Generator," Energies, MDPI, vol. 12(13), pages 1-12, July.
    7. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    8. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    9. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
    10. Sang-Bing Tsai & Jie Zhou & Yang Gao & Jiangtao Wang & Guodong Li & Yuxiang Zheng & Peng Ren & Wei Xu, 2017. "Combining FMEA with DEMATEL models to solve production process problems," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    11. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    12. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    13. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    14. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    15. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    16. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Synergistic effect between ordered Bi2Te2.7Se0.3 pillar array and layered Ag electrode for remarkably enhancing thermoelectric device performance," Energy, Elsevier, vol. 77(C), pages 591-596.
    17. Chen, Leisheng & Lee, Jaeyoung, 2015. "Effect of pulsed heat power on the thermal and electrical performances of a thermoelectric generator," Applied Energy, Elsevier, vol. 150(C), pages 138-149.
    18. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    19. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    20. Pablo Donoso-García & Luis Henríquez-Vargas & Esteban Huerta, 2022. "Waste Heat Recovery from Air Using Porous Media and Conversion to Electricity," Energies, MDPI, vol. 15(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:25-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.