IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp419-429.html
   My bibliography  Save this article

Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model

Author

Listed:
  • Wang, Xiao-Dong
  • Wang, Qiu-Hong
  • Xu, Jin-Liang

Abstract

This work for the first time uses a three-dimensional multi-physics model to optimize the performance of three kinds of two-stage TECs, connected electrically in series, in parallel, and separated, respectively. The optimizations are performed for the two-stage TEC with 30 thermoelectric elements. The number ratio and current ratio are searched to reach the optimal cooling capacity, COP, and maximum temperature difference, respectively. A marked three-dimensional temperature distribution is observed for the two-stage TEC with number ratio larger or smaller 1.00. In addition, temperature-dependent material properties are proven to be extremely important for predicting the two-stage TEC performance. Therefore, thermal resistance models extensively adopted in the previous two-stage TEC studies can not predict the two-stage TEC performance accurately because they assume the one-dimensional temperature distribution and constant material properties. The results also show that the thermoelectric element number on the hot stage should be larger than that on the cold stage for improving the cooling capacity and COP, and the optimal number ratio is found to be about 1.73–2.33 for the series configuration. The performance can be further improved by supplying a higher current to the hot stage, and the optimal current ratio ranges from 1.50 to 2.00.

Suggested Citation

  • Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:419-429
    DOI: 10.1016/j.energy.2013.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2008. "Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities," Applied Energy, Elsevier, vol. 85(7), pages 641-649, July.
    2. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    3. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    4. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    5. Martínez, A. & Astrain, D. & Rodríguez, A., 2011. "Experimental and analytical study on thermoelectric self cooling of devices," Energy, Elsevier, vol. 36(8), pages 5250-5260.
    6. Chen, Jincan & Zhou, Yinghui & Wang, Hongjie & Wang, Jin T., 2002. "Comparison of the optimal performance of single- and two-stage thermoelectric refrigeration systems," Applied Energy, Elsevier, vol. 73(3-4), pages 285-298, November.
    7. Rezania, A. & Rosendahl, L.A., 2012. "Thermal effect of a thermoelectric generator on parallel microchannel heat sink," Energy, Elsevier, vol. 37(1), pages 220-227.
    8. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    9. Astrain, D. & Vián, J.G. & Martínez, A. & Rodríguez, A., 2010. "Study of the influence of heat exchangers' thermal resistances on a thermoelectric generation system," Energy, Elsevier, vol. 35(2), pages 602-610.
    10. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    11. Cheng, Chin-Hsiang & Huang, Shu-Yu, 2012. "Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers," Applied Energy, Elsevier, vol. 100(C), pages 326-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Shumin & Ma, Ming & Wang, Jun & Yu, Jianlin, 2016. "Experiment investigation of a two-stage thermoelectric cooler under current pulse operation," Applied Energy, Elsevier, vol. 180(C), pages 628-636.
    2. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    3. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    4. Madan, Deepa & Wang, Zuoqian & Wright, Paul K. & Evans, James W., 2015. "Printed flexible thermoelectric generators for use on low levels of waste heat," Applied Energy, Elsevier, vol. 156(C), pages 587-592.
    5. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    6. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Meng, Jing-Hui, 2015. "Optimal pulse current shape for transient supercooling of thermoelectric cooler," Energy, Elsevier, vol. 83(C), pages 788-796.
    7. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    8. Lin, Lin & Yao, Bing-Qing & Wang, Xiao-Dong & Lee, Duu-Jong, 2022. "Carrier transport model and novel design for micro thermoelectric generator with enhanced performance," Applied Energy, Elsevier, vol. 315(C).
    9. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    10. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    11. Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
    12. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    13. Erro, I. & Aranguren, P. & Alzuguren, I. & Chavarren, D. & Astrain, D., 2023. "Experimental analysis of one and two-stage thermoelectric heat pumps to enhance the performance of a thermal energy storage," Energy, Elsevier, vol. 285(C).
    14. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    15. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    16. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    2. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    3. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    4. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    5. Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
    6. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    7. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    8. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Meng, Jing-Hui, 2015. "Optimal pulse current shape for transient supercooling of thermoelectric cooler," Energy, Elsevier, vol. 83(C), pages 788-796.
    9. Jia Yu & Qingshan Zhu & Li Kong & Haoqing Wang & Hongji Zhu, 2020. "Modeling of an Integrated Thermoelectric Generation–Cooling System for Thermoelectric Cooler Waste Heat Recovery," Energies, MDPI, vol. 13(18), pages 1-10, September.
    10. Hao, Junhong & Qiu, Huachen & Ren, Jianxun & Ge, Zhihua & Chen, Qun & Du, Xiaoze, 2020. "Multi-parameters analysis and optimization of a typical thermoelectric cooler based on the dimensional analysis and experimental validation," Energy, Elsevier, vol. 205(C).
    11. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    12. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    13. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    14. Chen, Wei-Hsin & Wang, Chien-Chang & Hung, Chen-I. & Yang, Chang-Chung & Juang, Rei-Cheng, 2014. "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator," Energy, Elsevier, vol. 64(C), pages 287-297.
    15. Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
    16. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
    17. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.
    18. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    19. Martinez, Alvaro & Astrain, David & Aranguren, Patricia, 2016. "Thermoelectric self-cooling for power electronics: Increasing the cooling power," Energy, Elsevier, vol. 112(C), pages 1-7.
    20. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:419-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.