IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp66-76.html

Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse

Author

Listed:
  • Saha, Koel
  • Verma, Pooja
  • Sikder, Jaya
  • Chakraborty, Sudip
  • Curcio, Stefano

Abstract

Sugarcane bagasse, has been studied as lignocellulosic feedstock to derive bioethanol; a major step towards the invention of green and sustainable energy. Major cost of the whole process lies in the enzymatic digestion of bagasse, since cost of cellulase enzyme is too high. Thus recovery and reuse of cellulase can reduce the total process cost. The perspective of cellulase recycling after hydrolysis of ionic liquid pretreated sugarcane bagasse was studied by synthesizing chitosan-cellulase nanohybrid and immobilizing the nanohybrid in alginate beads. SEM and Particle size analysis confirmed the formation of variable size of nanoparticles and zeta potential denoted the tendency to form agglomerate. The performance of immobilized nanohybrid was optimized by varying different operating parameters such as pH (3–7) and temperature (30–60 °C). Immobilized nanohybrid showed higher immobilization yield and stability as compared to immobilized cellulase at the optimum condition. The maximum reducing sugar concentration of 38.87 gm/lit was achieved when immobilized nanohybrid was loaded at 20 FPU/gm of pretreated bagasse. Hydrolysate thus obtained was fermented and 0.38 g/g ethanol yield was obtained. Immobilized nanohybrid was successfully recycled up to five times which made the hydrolysis step eco-friendly and economically feasible. The contribution of the investigation leads towards the development of energy efficient enzyme recycling scheme.

Suggested Citation

  • Saha, Koel & Verma, Pooja & Sikder, Jaya & Chakraborty, Sudip & Curcio, Stefano, 2019. "Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse," Renewable Energy, Elsevier, vol. 133(C), pages 66-76.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:66-76
    DOI: 10.1016/j.renene.2018.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Neha & Srivastava, Manish & Mishra, P.K. & Gupta, Vijai K. & Molina, Gustavo & Rodriguez-Couto, Susana & Manikanta, Ambepu & Ramteke, P.W., 2018. "Applications of fungal cellulases in biofuel production: Advances and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2379-2386.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Uma Maheswari & Krishnaraj Thirugnanasambantham & Ayan Mondal & Gopinath Halder & Jaya Sikder, 2023. "Enzymatic hydrolysis of structurally upgraded lignocellulosic biomass with the aid of humic acid: a case study in a membrane integrated bioreactor," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4033-4064, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoodi, S.R. & Mayer, M. & Besser, R.S., 2021. "Rapid and simple assembly of a thin microfluidic fuel cell stack by gas-assisted thermal bonding," Applied Energy, Elsevier, vol. 295(C).
    2. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    3. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    7. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    8. Damir Sostaric & Gyula Mester & Sanja Dorner, 2019. "Mobile ECG and SPO2 Chest Pain Subjective Indicators of Patient with GPS Location in Smart Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 629-639.
    9. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    10. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    11. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    14. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    16. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    17. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    18. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    19. Peng Yang & Ting Zhang & Yuheng Zhang & Sophie Wang & Yingwen Liu, 2020. "Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology," Energies, MDPI, vol. 13(14), pages 1-19, July.
    20. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:66-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.