IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp1000-1010.html
   My bibliography  Save this article

Performance of global luminous efficacy models and proposal of a new model for daylighting in Burgos, Spain

Author

Listed:
  • Dieste-Velasco, M.I.
  • Díez-Mediavilla, M.
  • Granados-López, D.
  • González-Peña, D.
  • Alonso-Tristán, C.

Abstract

Daylighting is recognized as an important and useful strategy in the design of energy efficient buildings. Daylight is still the best source of light for good colour rendering and visual comfort. In this study, a new model of global luminous efficacy over a horizontal surface is proposed. A comparative study of eighteen classic models is presented, to obtain global horizontal illuminance, using both, the original formulation and new formulae with local adaptations, in order to determine the most suitable models for the conditions in Burgos (Spain). With this aim in mind, the selected models consisted of six models developed for all sky conditions, five models for clear sky conditions, three for partly cloudy sky and four for modelling overcast sky conditions. These eighteen models were also compared with the proposed model using experimental global illuminance measurements for different sky conditions. It was shown that the proposed model behaved in a better way than most of the classic models selected from the literature; both for all sky conditions and for particular sky conditions (clear, partly cloudy and overcast). The proposed model was therefore generally applicable, with no need to employ a different model for each particular sky condition.

Suggested Citation

  • Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Granados-López, D. & González-Peña, D. & Alonso-Tristán, C., 2019. "Performance of global luminous efficacy models and proposal of a new model for daylighting in Burgos, Spain," Renewable Energy, Elsevier, vol. 133(C), pages 1000-1010.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1000-1010
    DOI: 10.1016/j.renene.2018.10.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vartiainen, Eero, 2000. "A comparison of luminous efficacy models with illuminance and irradiance measurements," Renewable Energy, Elsevier, vol. 20(3), pages 265-277.
    2. Chaiwiwatworakul, Pipat & Chirarattananon, Surapong, 2013. "Luminous efficacies of global and diffuse horizontal irradiances in a tropical region," Renewable Energy, Elsevier, vol. 53(C), pages 148-158.
    3. Fakra, A.H. & Boyer, H. & Miranville, F. & Bigot, D., 2011. "A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate," Renewable Energy, Elsevier, vol. 36(1), pages 298-306.
    4. Azad, Abdus Salam & Rakshit, Dibakar & Patil, K.N., 2018. "Model development and evaluation of global and diffuse luminous efficacy for humid sub-tropical region," Renewable Energy, Elsevier, vol. 119(C), pages 375-387.
    5. Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Alonso-Tristán, C. & González-Peña, D. & Rodríguez-Amigo, M.C. & García-Calderón, T., 2020. "A new diffuse luminous efficacy model for daylight availability in Burgos, Spain," Renewable Energy, Elsevier, vol. 146(C), pages 2812-2826.
    2. Li, Danny H.W. & Aghimien, Emmanuel I. & Tsang, Ernest K.W., 2022. "Application of artificial neural networks in horizontal luminous efficacy modeling," Renewable Energy, Elsevier, vol. 197(C), pages 864-878.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Aghimien, Emmanuel I. & Tsang, Ernest K.W., 2022. "Application of artificial neural networks in horizontal luminous efficacy modeling," Renewable Energy, Elsevier, vol. 197(C), pages 864-878.
    2. Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Alonso-Tristán, C. & González-Peña, D. & Rodríguez-Amigo, M.C. & García-Calderón, T., 2020. "A new diffuse luminous efficacy model for daylight availability in Burgos, Spain," Renewable Energy, Elsevier, vol. 146(C), pages 2812-2826.
    3. Azad, Abdus Salam & Rakshit, Dibakar & Patil, K.N., 2018. "Model development and evaluation of global and diffuse luminous efficacy for humid sub-tropical region," Renewable Energy, Elsevier, vol. 119(C), pages 375-387.
    4. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    5. Robledo, Luis & Soler, Alfonso, 2001. "Luminous efficacy of direct solar radiation for all sky types," Energy, Elsevier, vol. 26(7), pages 669-677.
    6. Soler, A & Gopinathan, K.K, 2001. "Analysis of zenith luminance data for all sky conditions," Renewable Energy, Elsevier, vol. 24(2), pages 185-196.
    7. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    8. Janjai, S. & Prathumsit, J. & Buntoung, S. & Wattan, R. & Pattarapanitchai, S. & Masiri, I., 2014. "Modeling the luminous efficacy of direct and diffuse solar radiation using information on cloud, aerosol and water vapor in the tropics," Renewable Energy, Elsevier, vol. 66(C), pages 111-117.
    9. Soler, A & Gopinathan, K.K & Claros, S.T, 2001. "A study on zenith luminance on Madrid overcast skies," Renewable Energy, Elsevier, vol. 23(1), pages 49-55.
    10. Hwang Yi & Mi-Jin Kim & Yuri Kim & Sun-Sook Kim & Kyu-In Lee, 2019. "Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 11(9), pages 1-28, May.
    11. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    12. Robledo, L. & Soler, A., 2002. "A simple clear skies model for the luminous efficacy of diffuse solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 169-176.
    13. Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
    14. Beccali, M. & Finocchiaro, P. & Ippolito, M.G. & Leone, G. & Panno, D. & Zizzo, G., 2018. "Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: A case study," Energy, Elsevier, vol. 157(C), pages 106-114.
    15. Bandara, Kanchana & Varpe, Øystein & Ji, Rubao & Eiane, Ketil, 2018. "A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods," Ecological Modelling, Elsevier, vol. 368(C), pages 357-376.
    16. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    17. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    18. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    19. Chaiwiwatworakul, Pipat & Chirarattananon, Surapong, 2013. "Luminous efficacies of global and diffuse horizontal irradiances in a tropical region," Renewable Energy, Elsevier, vol. 53(C), pages 148-158.
    20. Saxena, Rajat & Rakshit, Dibakar & Kaushik, S.C., 2020. "Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings," Renewable Energy, Elsevier, vol. 149(C), pages 587-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1000-1010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.