IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp1198-1206.html
   My bibliography  Save this article

A methodology for predicting hybrid solar panel performance in different operating modes

Author

Listed:
  • Fine, Jamie P.
  • Dworkin, Seth B.
  • Friedman, Jacob

Abstract

When a hybrid solar panel produces thermal energy, it can operate in either hybrid mode, or thermal-only mode. In hybrid mode, the panel produces both electrical power and thermal power, and in thermal-only mode, only thermal power is produced. It has been shown that the thermal performance of a hybrid panel can vary by 15% on average between these two modes, but panel manufacturers are only required to publish performance data for one mode. Other studies in the literature have found a difference in panel thermal performance between these two modes, but they do not discuss a methodology to estimate alternate mode performance using manufacturer-supplied data. To alleviate this gap in the literature, this study presents a novel methodology to estimate alternate mode thermal performance of a hybrid solar panel only using manufacturer-supplied data. To match the panel information that is typically available, the second-order thermal efficiency model is used to estimate thermal performance, and temperature dependent electrical characteristics are used to estimate electrical performance. Indoor testing using a solar simulator was carried out, and the detailed test results are included. Results show that using the proposed modification technique can estimate thermal performance within 4% of actual values on average.

Suggested Citation

  • Fine, Jamie P. & Dworkin, Seth B. & Friedman, Jacob, 2019. "A methodology for predicting hybrid solar panel performance in different operating modes," Renewable Energy, Elsevier, vol. 130(C), pages 1198-1206.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:1198-1206
    DOI: 10.1016/j.renene.2018.08.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118310322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2015. "Transient analysis of a photovoltaic thermal heat input process with thermal storage," Applied Energy, Elsevier, vol. 160(C), pages 308-320.
    2. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    3. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2017. "Detailed modeling of a novel photovoltaic thermal cascade heat pump domestic water heating system," Renewable Energy, Elsevier, vol. 101(C), pages 500-513.
    4. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.
    5. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    6. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    7. Yandri, Erkata, 2017. "The effect of Joule heating to thermal performance of hybrid PVT collector during electricity generation," Renewable Energy, Elsevier, vol. 111(C), pages 344-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Sohani, Ali & Sayyaadi, Hoseyn, 2020. "Providing an accurate method for obtaining the efficiency of a photovoltaic solar module," Renewable Energy, Elsevier, vol. 156(C), pages 395-406.
    3. Wei-Hsiang Chiang & Han-Sheng Wu & Jong-Shinn Wu & Shiow-Jyu Lin, 2022. "A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle," Energies, MDPI, vol. 15(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Pang, Wei & Zhang, Qian & Cui, Yanan & Zhang, Linrui & Yu, Hongwen & Zhang, Xiaoyan & Zhang, Yongzhe & Yan, Hui, 2019. "Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector," Energy, Elsevier, vol. 187(C).
    3. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    4. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    5. Giwa, Adewale & Yusuf, Ahmed & Dindi, Abdallah & Balogun, Hammed Abiodun, 2020. "Polygeneration in desalination by photovoltaic thermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    8. Anis Idir & Maxime Perier-Muzet & David Aymé-Perrot & Driss Stitou, 2022. "Thermodynamic Optimization of Electrical and Thermal Energy Production of PV Panels and Potential for Valorization of the PV Low-Grade Thermal Energy into Cold," Energies, MDPI, vol. 15(2), pages 1-20, January.
    9. Sang-Bing Tsai & Jie Zhou & Yang Gao & Jiangtao Wang & Guodong Li & Yuxiang Zheng & Peng Ren & Wei Xu, 2017. "Combining FMEA with DEMATEL models to solve production process problems," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    10. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    11. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    12. Sakellariou, Evangelos I. & Axaopoulos, Petros J., 2020. "Energy performance indexes for solar assisted ground source heat pump systems with photovoltaic-thermal collectors," Applied Energy, Elsevier, vol. 272(C).
    13. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    14. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    15. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    16. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    17. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    18. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    19. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    20. Salameh, Tareq & Tawalbeh, Muhammad & Juaidi, Adel & Abdallah, Ramez & Hamid, Abdul-Kadir, 2021. "A novel three-dimensional numerical model for PV/T water system in hot climate region," Renewable Energy, Elsevier, vol. 164(C), pages 1320-1333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:1198-1206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.