IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp210-225.html
   My bibliography  Save this article

The effect of iodide and tri-iodide on the dye sensitized solar cell

Author

Listed:
  • Zouhri, Khalid

Abstract

The dye sensitized solar cell needs a tremendous improvement to be competitive with other solar cell that are available in the market. To battle this issue a band gap materials engineering needs to be considered. In this study, a numerical model analysis is developed to take into consideration the effect of iodide and tri-iodide on the electron transport through the mesoporous oxide film. For this reason this research intend to solve the continuity equation for the iodide, tri-iodide and the electron transport using FDM method to investigate the effect electrolyte properties on the performance of DSSCs. The simulation results demonstrate that in order to achieve the highest exergy efficiency it is suggested to have electron transport rate above 1.45 × 10−7 (cm/s), the TiO2 porosity to be in the range of 0.36–0.42, the recombination and the regeneration rate above the 2.693 × 10−7 (cm/s) and 1.55 × 10−7 (cm/s) respectively. The results also showed that peak target of electron transport rate, recombination rate, and regeneration rate enhance the light harvesting efficiency and DSSCs exergy efficiency.

Suggested Citation

  • Zouhri, Khalid, 2018. "The effect of iodide and tri-iodide on the dye sensitized solar cell," Renewable Energy, Elsevier, vol. 126(C), pages 210-225.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:210-225
    DOI: 10.1016/j.renene.2018.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giannouli, M. & Spiliopoulou, F., 2012. "Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 41(C), pages 115-122.
    2. Jena, Ajay K. & Bhargava, Parag, 2013. "Analysis of light harvest in terms of current per mole of dye in dye-sensitized solar cells made with opaque and transparent photoanodes," Renewable Energy, Elsevier, vol. 53(C), pages 265-270.
    3. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    4. Wang, Hai & Liu, Yong & Xu, Hongmei & Dong, Xian & Shen, Hui & Wang, Yuanhao & Yang, Hongxing, 2009. "An investigation on the novel structure of dye-sensitized solar cell with integrated photoanode," Renewable Energy, Elsevier, vol. 34(6), pages 1635-1638.
    5. Barbera, Elena & Sforza, Eleonora & Guidobaldi, Andrea & Di Carlo, Aldo & Bertucco, Alberto, 2017. "Integration of dye-sensitized solar cells (DSC) on photobioreactors for improved photoconversion efficiency in microalgal cultivation," Renewable Energy, Elsevier, vol. 109(C), pages 13-21.
    6. Dehaudt, Jérémy & Husson, Jérôme & Guyard, Laurent & Oswald, Frédéric & Martineau, David, 2014. "A simple access to “Black-Dye” analogs with good efficiencies in dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 66(C), pages 588-595.
    7. Ludin, Norasikin A. & Al-Alwani Mahmoud, A.M. & Bakar Mohamad, Abu & Kadhum, Abd. Amir H. & Sopian, Kamaruzzaman & Abdul Karim, Nor Shazlinah, 2014. "Review on the development of natural dye photosensitizer for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 386-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    2. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    3. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    4. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    5. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    6. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    7. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system," Energy, Elsevier, vol. 201(C).
    8. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    9. Hosseinnezhad, Mozhgan & Gharanjig, Kamaladin & Moradian, Siamak & Saeb, Mohammad Reza, 2017. "In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration?," Energy, Elsevier, vol. 134(C), pages 864-870.
    10. Rezania, A. & Sera, D. & Rosendahl, L.A., 2016. "Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe," Renewable Energy, Elsevier, vol. 99(C), pages 127-135.
    11. Chiu, Jian-Ming & Chu, Chih-Chien & Zena, Desalegn Manayeh & Tai, Yian, 2015. "Simultaneous enhancement of photocurrent and open circuit voltage in a ZnO based organic solar cell by mixed self-assembled monolayers," Applied Energy, Elsevier, vol. 160(C), pages 681-686.
    12. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    13. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    14. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
    15. Giannouli, M. & Spiliopoulou, F., 2012. "Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 41(C), pages 115-122.
    16. Xie, Yu & Wu, Shi-jun & Yang, Can-jun, 2016. "Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter," Applied Energy, Elsevier, vol. 164(C), pages 620-627.
    17. Jaafar, Siti Nur Hidayah & Minggu, Lorna Jeffery & Arifin, Khuzaimah & Kassim, Mohammad B. & Wan, Wan Ramli Daud, 2017. "Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 698-709.
    18. Barbera, Elena & Sforza, Eleonora & Vecchiato, Luca & Bertucco, Alberto, 2017. "Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study," Energy, Elsevier, vol. 140(P1), pages 116-124.
    19. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    20. Da, Yun & Xuan, Yimin & Li, Qiang, 2016. "From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum," Energy, Elsevier, vol. 95(C), pages 200-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:210-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.