IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp984-992.html
   My bibliography  Save this article

Hybrid two-stage culture of Halamphora coffeaeformis for biodiesel production: Growth phases, nutritional stages and biorefinery approach

Author

Listed:
  • Martín, Lucas A.
  • Popovich, Cecilia A.
  • Martínez, Ana M.
  • Scodelaro Bilbao, Paola G.
  • Damiani, María C.
  • Leonardi, Patricia I.

Abstract

The growth, lipid accumulation and bioproducts of the marine diatom Halamphora coffeaeformis were evaluated in a hybrid two-stage culture using seawater enriched with nutrients and without vitamins. The influence of dissolved and internal nutrients on growth and lipid accumulation was also analyzed. Total lipid content increased in the declining phase up to 33.4% ash-free dry weight, due to an increase in neutral lipids, which reached 87% of total lipids. The observed delay in triacylglycerol (TAG) accumulation could be explained by the accumulation of large internal pools of nitrogen in H. coffeaeformis. TAG, frustules (silica-containing cell wall) and soluble exopolysaccharides are analyzed and proposed as bioproducts of commercial interest. A biorefinery approach for the economic and environmentally sustainable production of biodiesel from the hybrid two-stage culture of H. coffeaeformis is suggested.

Suggested Citation

  • Martín, Lucas A. & Popovich, Cecilia A. & Martínez, Ana M. & Scodelaro Bilbao, Paola G. & Damiani, María C. & Leonardi, Patricia I., 2018. "Hybrid two-stage culture of Halamphora coffeaeformis for biodiesel production: Growth phases, nutritional stages and biorefinery approach," Renewable Energy, Elsevier, vol. 118(C), pages 984-992.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:984-992
    DOI: 10.1016/j.renene.2017.10.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117310479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    2. Martín, Lucas A. & Popovich, Cecilia A. & Martinez, Ana M. & Damiani, María C. & Leonardi, Patricia I., 2016. "Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two-stage system for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 127-135.
    3. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramachandra, T.V. & Saranya, G., 2022. "Sustainable Bioeconomy prospects of diatom biorefineries in the Indian west coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    3. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    4. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    5. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    6. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.
    7. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    8. Smith, Ron G. & Smith, Ian J. & Smith, Brendan D., 2018. "A novel strategy for sequestering atmospheric CO2: The use of sealed microalgal cultures located in the open-oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 85-89.
    9. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    10. Ramos Tercero, Elia Armandina & Domenicali, Giacomo & Bertucco, Alberto, 2014. "Autotrophic production of biodiesel from microalgae: An updated process and economic analysis," Energy, Elsevier, vol. 76(C), pages 807-815.
    11. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    12. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    13. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    14. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    15. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    16. Indrajeet Singh & Ashutosh Pandey & Sumarlin Shangdiar & Piyush Kant Rai & Ajay Kumar & Kassian T. T. Amesho & Faizal Bux, 2023. "Towards Sustainable Energy: Harnessing Microalgae Biofuels for a Greener Future," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    17. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    19. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    20. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:984-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.