IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp546-553.html
   My bibliography  Save this article

A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva

Author

Listed:
  • Wu, Sheng-qing
  • Cai, Zi-zhe
  • Niu, Yi
  • Zheng, Dong
  • He, Guo-rui
  • Wang, Yong
  • Yang, De-po

Abstract

Biolubricants are gaining increased attention because of their low toxicity, high biodegradability, and miscibility with additives. These features render them ideal for lubrication, especially in total-loss processes. In this study, housefly (Musca domestica) larvae were used as low-cost, non-food biolubricant feedstock. A larval lipid with high acid value (AV) of 63 mg KOH/g was used as feedstock for esterification to produce 2-ethylhexyl fatty acid esters (2-EH esters). We developed a method of producing high-purity 2-EH esters in which housefly larva free fatty acids (HLFFAs) were derived from larvae fed with kitchen waste. HLFFAs were esterified with 2-ethyl-1-hexanol (2-EHOH) catalysed with benzenesulfonic acid (BSA). The optimum esterification conditions were as follows: catalyst loading, 0.5 wt%; 2-EHOH-to-HLFFAs molar ratio, 3:1; temperature, 130 °C; and reaction time, 2 h. These conditions yielded 98.6% esterification rate. Excess 2-EHOH was removed by molecular distillation at 80 Pa and 110 °C. Residual fatty acids were neutralised by alkali refining. The chemical and physical properties, including the tribological properties, of the produced high-purity 2-EH esters (>99.7%) were also tested.

Suggested Citation

  • Wu, Sheng-qing & Cai, Zi-zhe & Niu, Yi & Zheng, Dong & He, Guo-rui & Wang, Yong & Yang, De-po, 2017. "A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva," Renewable Energy, Elsevier, vol. 113(C), pages 546-553.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:546-553
    DOI: 10.1016/j.renene.2017.05.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Sen & Li, Qing & Gao, Yang & Zheng, Longyu & Liu, Ziduo, 2014. "Biodiesel production from swine manure via housefly larvae (Musca domestica L.)," Renewable Energy, Elsevier, vol. 66(C), pages 222-227.
    2. Syaima, M.T.S & Ong, K.H. & Mohd Noor, Ishenny & Zamratul, M.I.M. & Brahim, S.A. & Hafizul, M.M., 2015. "The synthesis of bio-lubricant based oil by hydrolysis and non-catalytic of palm oil mill effluent (POME) using lipase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 669-675.
    3. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    4. Yang, Sen & Liu, Ziduo, 2014. "Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production," Applied Energy, Elsevier, vol. 113(C), pages 385-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
    2. Bahadi, Murad & Salimon, Jumat & Derawi, Darfizzi, 2021. "Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification," Renewable Energy, Elsevier, vol. 171(C), pages 981-993.
    3. Nor, Nurazira Mohd & Salih, Nadia & Salimon, Jumat, 2022. "Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant," Renewable Energy, Elsevier, vol. 200(C), pages 942-956.
    4. Wu, Sheng-qing & Sun, Ting-ting & Cai, Zi-zhe & Shen, Juan & Yang, Wen-zhe & Zhao, Zhi-min & Yang, De-po, 2020. "Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid," Renewable Energy, Elsevier, vol. 162(C), pages 1940-1951.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
    2. Wu, Sheng-qing & Sun, Ting-ting & Cai, Zi-zhe & Shen, Juan & Yang, Wen-zhe & Zhao, Zhi-min & Yang, De-po, 2020. "Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid," Renewable Energy, Elsevier, vol. 162(C), pages 1940-1951.
    3. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    4. Hoang Chinh Nguyen & Dinh Thi My Huong & Horng-Yi Juan & Chia-Hung Su & Chien-Chung Chien, 2018. "Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology," Energies, MDPI, vol. 11(5), pages 1-12, April.
    5. Mathimani, Thangavel & Senthil Kumar, Tamilkolundu & Chandrasekar, Murugesan & Uma, Lakshmanan & Prabaharan, Dharmar, 2017. "Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel," Renewable Energy, Elsevier, vol. 105(C), pages 637-646.
    6. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Yang, Sen & Liu, Ziduo, 2014. "Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production," Applied Energy, Elsevier, vol. 113(C), pages 385-391.
    8. Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
    9. Chia-Hung Su & Hoang Chinh Nguyen & Uyen Khanh Pham & My Linh Nguyen & Horng-Yi Juan, 2018. "Biodiesel Production from a Novel Nonedible Feedstock, Soursop ( Annona muricata L.) Seed Oil," Energies, MDPI, vol. 11(10), pages 1-11, September.
    10. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    11. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    12. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2013. "Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock," Applied Energy, Elsevier, vol. 101(C), pages 618-621.
    13. Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2013. "A review of lipid-based biomasses as feedstocks for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 97-108.
    14. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    15. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Emission analysis of a modern Tier 4 DI diesel engine fueled by biodiesel-diesel blends with a cold flow improver (Wintron Synergy) at multiple idling conditions," Applied Energy, Elsevier, vol. 179(C), pages 45-54.
    16. Dieu Linh Hoang & Chris Davis & Henri C. Moll & Sanderine Nonhebel, 2020. "Can Multiple Uses of Biomass Limit the Feedstock Availability for Future Biogas Production? An Overview of Biogas Feedstocks and Their Alternative Uses," Energies, MDPI, vol. 13(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:546-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.