IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp512-531.html
   My bibliography  Save this article

Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis

Author

Listed:
  • Lee, Kyoungsoo
  • Huque, Ziaul
  • Kommalapati, Raghava
  • Han, Sang-Eul

Abstract

The fluid-structure interaction (FSI) analyses were performed to obtain the structural responses of 3D wind turbine research on the National Renewable Energy Laboratory (NREL) Phase VI wind turbine using the commercial program ANSYS. The surface pressure information was imported from the results of computation fluid dynamics (CFD) which were studied in advance. To perform the structural analyses for both of FSI and blade element momentum (BEM) method, the structural model of full NREL Phase VI wind turbine were developed which is assembled by a rotor, nacelle, tower and blades. The aerodynamic forces also can be calculated from structural model by the value of reaction on rotor shaft. From those new aerodynamic evaluating process, the accuracy of FSI process which utilizing CFD results were described. And the advantages and characteristics of combination of CFD/FSI which were demonstrated by investigating the structural response of NREL Phase VI turbine for 7 wind speed cases. From the studies of structural analysis, the wind turbine can be said that it is not governed by torque force, which is the main interest in power efficiency of wind turbine, but the thrust force. Finally, the practical applicability of this methodology is discussed.

Suggested Citation

  • Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:512-531
    DOI: 10.1016/j.renene.2017.02.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730157X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lago, Lucas I. & Ponta, Fernando L. & Otero, Alejandro D., 2013. "Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade," Renewable Energy, Elsevier, vol. 59(C), pages 13-22.
    2. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    3. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    4. Lanzafame, R. & Messina, M., 2012. "BEM theory: How to take into account the radial flow inside of a 1-D numerical code," Renewable Energy, Elsevier, vol. 39(1), pages 440-446.
    5. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2016. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade," Renewable Energy, Elsevier, vol. 86(C), pages 796-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    2. Ziaul Huque & Fadoua Zemmouri & Haidong Lu & Raghava Rao Kommalapati, 2024. "Fluid–Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips," Energies, MDPI, vol. 17(5), pages 1-29, February.
    3. Ke, Wenliang & Hashem, Islam & Zhang, Wenwu & Zhu, Baoshan, 2022. "Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study," Energy, Elsevier, vol. 239(PB).
    4. Jorge Mario Tamayo-Avendaño & Ivan David Patiño-Arcila & César Nieto-Londoño & Julián Sierra-Pérez, 2023. "Fluid–Structure Interaction Analysis of a Wind Turbine Blade with Passive Control by Bend–Twist Coupling," Energies, MDPI, vol. 16(18), pages 1-26, September.
    5. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2020. "A fluid-structure interaction (FSI) and energy generation modelling for roof mounted renewable energy installations in buildings for extreme weather and typhoon resilience," Renewable Energy, Elsevier, vol. 160(C), pages 770-787.
    6. Michal Lipian & Pawel Czapski & Damian Obidowski, 2020. "Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2016. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade," Renewable Energy, Elsevier, vol. 86(C), pages 796-818.
    2. Liu, Pengyin & Yu, Guohua & Zhu, Xiaocheng & Du, Zhaohui, 2014. "Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling," Renewable Energy, Elsevier, vol. 69(C), pages 402-409.
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    5. Hailay Kiros Kelele & Torbjørn Kirstian Nielsen & Lars Froyd & Mulu Bayray Kahsay, 2020. "Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy," Energies, MDPI, vol. 13(21), pages 1-20, November.
    6. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    7. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    8. Farhan, A. & Hassanpour, A. & Burns, A. & Motlagh, Y. Ghaffari, 2019. "Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance," Renewable Energy, Elsevier, vol. 131(C), pages 1255-1273.
    9. Nour Khlaifat & Ali Altaee & John Zhou & Yuhan Huang & Ali Braytee, 2020. "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, MDPI, vol. 13(9), pages 1-26, May.
    10. Jijian Lian & Yaya Jia & Haijun Wang & Fang Liu, 2016. "Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction," Energies, MDPI, vol. 9(8), pages 1-21, August.
    11. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    12. Abdulqadir, Sherwan A. & Iacovides, Hector & Nasser, Adel, 2017. "The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines," Energy, Elsevier, vol. 119(C), pages 767-799.
    13. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    14. Lin, Yan-Ting & Chiu, Pao-Hsiung & Huang, Chin-Cheng, 2017. "An experimental and numerical investigation on the power performance of 150 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 113(C), pages 85-93.
    15. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    16. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    17. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    18. Youjin Kim & Galih Bangga & Antonio Delgado, 2020. "Investigations of HAWT Airfoil Shape Characteristics and 3D Rotational Augmentation Sensitivity Toward the Aerodynamic Performance Improvement," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    19. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    20. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:512-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.