IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp644-651.html
   My bibliography  Save this article

Uncertainties associated with solar collector efficiency test using an artificial solar simulator

Author

Listed:
  • Sowmy, Daniel Setrak
  • Schiavon Ara, Paulo José
  • Prado, Racine T.A.

Abstract

Due to environmental effects of extensive use of energy, solar collectors are being installed on a large scale in many countries. The accurate determination of its efficiency by a test laboratory strongly affects the system performance prediction, cost-benefit valuations, technology introducing in public policies and certification programs. In this context and considering that indoor efficiency tests using solar simulators are increasingly used by test labs, this paper presents an assessment of uncertainty associated with usual flat plate solar collector efficiency tests performed with solar simulator. For this purpose, tests were performed according indoor method in order to estimate uncertainty associated with efficiency determination. Uncertainty evaluation included the contributions of instrumentation, temporal stability of environmental test conditions and statistical regression used to determine collector's efficiency curve. Additional tests and evaluations were also carried out to investigate solar simulated irradiance and air speed influence on estimated uncertainty and to validate the results from comparison with uncertainties derived from two other laboratories.

Suggested Citation

  • Sowmy, Daniel Setrak & Schiavon Ara, Paulo José & Prado, Racine T.A., 2017. "Uncertainties associated with solar collector efficiency test using an artificial solar simulator," Renewable Energy, Elsevier, vol. 108(C), pages 644-651.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:644-651
    DOI: 10.1016/j.renene.2016.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    2. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    3. Goldemberg, Jose & Coelho, Suani Teixeira & Lucon, Oswaldo, 2004. "How adequate policies can push renewables," Energy Policy, Elsevier, vol. 32(9), pages 1141-1146, June.
    4. Li, Yu-Chu Maxwell & Lu, Shyi-Min, 2005. "Uncertainty evaluation of a solar collector testing system in accordance with ISO 9806-1," Energy, Elsevier, vol. 30(13), pages 2447-2452.
    5. Maxoulis, Christos N. & Charalampous, Harris P. & Kalogirou, Soteris A., 2007. "Cyprus solar water heating cluster: A missed opportunity?," Energy Policy, Elsevier, vol. 35(6), pages 3302-3315, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Wanxiang & Yue, Qi & Cao, Lihui & Ren, Lijie & Jiang, Leijie & Kong, Xiangru & Gao, Weijun, 2024. "The impact of spectral distribution on photovoltaic power generation and its quantitative evaluation model," Applied Energy, Elsevier, vol. 358(C).
    2. Jan K. Kazak & Małgorzata Świąder, 2018. "SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS," Energies, MDPI, vol. 11(8), pages 1-12, August.
    3. Aref, Latif & Fallahzadeh, Rasoul & Shabanian, Seyed Reza & Hosseinzadeh, Mojtaba, 2021. "A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector," Energy, Elsevier, vol. 230(C).
    4. Youngjin Choi, 2018. "An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions," Energies, MDPI, vol. 11(7), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    2. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    3. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    4. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    5. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    7. Sk Uddin & Ros Taplin & Xiaojiang Yu, 2010. "Towards a sustainable energy future—exploring current barriers and potential solutions in Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(1), pages 63-87, February.
    8. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    9. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
    10. Gómez, Maria F. & Silveira, Semida, 2010. "Rural electrification of the Brazilian Amazon - Achievements and lessons," Energy Policy, Elsevier, vol. 38(10), pages 6251-6260, October.
    11. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    12. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    13. Hamelinck, Carlo N & Faaij, Andre P.C., 2006. "Outlook for advanced biofuels," Energy Policy, Elsevier, vol. 34(17), pages 3268-3283, November.
    14. Carlos J. Porras-Prieto & Susana Benedicto-Schönemann & Fernando R. Mazarrón & Rosa M. Benavente, 2016. "Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand," Energies, MDPI, vol. 9(12), pages 1-15, December.
    15. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    16. Zempila, Melina-Maria & Giannaros, Theodore M. & Bais, Alkiviadis & Melas, Dimitris & Kazantzidis, Andreas, 2016. "Evaluation of WRF shortwave radiation parameterizations in predicting Global Horizontal Irradiance in Greece," Renewable Energy, Elsevier, vol. 86(C), pages 831-840.
    17. Sk Noim Uddin & Ros Taplin & Xiaojiang Yu, 2006. "Advancement of renewables in Bangladesh and Thailand: Policy intervention and institutional settings," Natural Resources Forum, Blackwell Publishing, vol. 30(3), pages 177-187, August.
    18. García, José Luis & Porras-Prieto, Carlos Javier & Benavente, Rosa María & Gómez-Villarino, María Teresa & Mazarrón, Fernando R., 2019. "Profitability of a solar water heating system with evacuated tube collector in the meat industry," Renewable Energy, Elsevier, vol. 131(C), pages 966-976.
    19. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    20. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:644-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.