IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp1-10.html
   My bibliography  Save this article

Thermodynamic analysis of biogas fed solid oxide fuel cell power plants

Author

Listed:
  • Prodromidis, George N.
  • Coutelieris, Frank A.

Abstract

The present research study presents the optimization of Solid Oxide Fuel Cell (SOFC) power plants directly fed by biogas. By considering energy and exergy balances for such a system, a detailed thermodynamic model (THERMAS) was designed and implemented. A specific SOFC-based system was selected as case study, equipped with three heat exchangers (preheaters), a reformer, a SOFC-stack system and an afterburner. The use of the simulation tool THERMAS give us the opportunity to investigate all the appropriate parameters that affect system’s efficiency based on exergy analysis while incorporating a detailed parametric analysis regarding the whole system. The optimization process relies on the difference between the energy and exergy efficiency by considering an innovative Optimization Factor (OPF) for each simulated system, which is dynamically affected by operational parameters, such as fuel composition, extension of chemical reactions and temperatures. It is found that the use of a pure fuels seems to be meaningless without optimization.

Suggested Citation

  • Prodromidis, George N. & Coutelieris, Frank A., 2017. "Thermodynamic analysis of biogas fed solid oxide fuel cell power plants," Renewable Energy, Elsevier, vol. 108(C), pages 1-10.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:1-10
    DOI: 10.1016/j.renene.2017.02.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papurello, Davide & Lanzini, Andrea & Tognana, Lorenzo & Silvestri, Silvia & Santarelli, Massimo, 2015. "Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack," Energy, Elsevier, vol. 85(C), pages 145-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    2. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    3. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    5. Li, Jiawen, 2022. "A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient," Applied Energy, Elsevier, vol. 324(C).
    6. Aghbashlo, Mortaza & Tabatabaei, Meisam & Soltanian, Salman & Ghanavati, Hossein, 2019. "Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis," Renewable Energy, Elsevier, vol. 143(C), pages 64-76.
    7. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    8. Mehrabian, Morteza & Mahmoudimehr, Javad, 2023. "A correlation for optimal steam-to-fuel ratio in a biogas-fueled solid oxide fuel cell with internal steam reforming by using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 219(P1).
    9. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    10. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    11. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    2. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    3. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    4. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    5. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    6. Chen, Huili & Wang, Fen & Wang, Wei & Chen, Daifen & Li, Si-Dian & Shao, Zongping, 2016. "H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels," Applied Energy, Elsevier, vol. 179(C), pages 765-777.
    7. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.
    8. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    9. Giovanni Coppola & Davide Papurello, 2018. "Biogas Cleaning: Activated Carbon Regeneration for H 2 S Removal," Clean Technol., MDPI, vol. 1(1), pages 1-18, June.
    10. Kupecki, Jakub & Papurello, Davide & Lanzini, Andrea & Naumovich, Yevgeniy & Motylinski, Konrad & Blesznowski, Marcin & Santarelli, Massimo, 2018. "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)," Applied Energy, Elsevier, vol. 230(C), pages 1573-1584.
    11. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    12. Hubert Prask & Józef Szlachta & Małgorzata Fugol & Leszek Kordas & Agnieszka Lejman & Franciszek Tużnik & Filip Tużnik, 2018. "Sustainability Biogas Production from Ensiled Plants Consisting of the Transformation of the Digestate into a Valuable Organic-Mineral Granular Fertilizer," Sustainability, MDPI, vol. 10(3), pages 1-13, February.
    13. Jienkulsawad, Prathak & Arpornwichanop, Amornchai, 2016. "Investigating the performance of a solid oxide fuel cell and a molten carbonate fuel cell combined system," Energy, Elsevier, vol. 107(C), pages 843-853.
    14. Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
    15. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.
    16. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Lee, Sanghyeok & Park, Mansoo & Kim, Hyoungchul & Yoon, Kyung Joong & Son, Ji-Won & Lee, Jong-Ho & Kim, Byung-Kook & Choi, Wonjoon & Hong, Jongsup, 2017. "Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations," Energy, Elsevier, vol. 120(C), pages 293-305.
    18. Chen, Chen-Yu & Su, Sheng-Chun, 2018. "Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates," Energy, Elsevier, vol. 159(C), pages 440-447.
    19. Chatrattanawet, Narissara & Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai & Patcharavorachot, Yaneeporn, 2018. "Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches," Energy, Elsevier, vol. 146(C), pages 131-140.
    20. Mehran, Muhammad Taqi & Khan, Muhammad Zubair & Song, Rak-Hyun & Lim, Tak-Hyoung & Naqvi, Muhammad & Raza, Rizwan & Zhu, Bin & Hanif, Muhammad Bilal, 2023. "A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.