IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v100y2017icp114-128.html
   My bibliography  Save this article

Modelling and control of solar thermal system with borehole seasonal storage

Author

Listed:
  • Xu, Qingqing
  • Dubljevic, Stevan

Abstract

The paper addresses the problem of controlling a solar thermal storage system with the purpose of achieving a desired thermal comfort level and energy savings. A solar thermal power plant is used for heating district houses with borehole seasonal energy storage. As the energy output from the solar thermal plant with borehole seasonal storage varies, the control system maintains the thermal comfort by using a servo controller. In this work, the modelling of the solar thermal system with borehole seasonal storage is inspired by the Drake Landing Solar Community in Okotoks, Alberta, Canada [1]. The discrete model of the integrated energy system is obtained by using energy preserving Cayley-Tustin discretization. A simple and easily realizable servo control algorithm is designed to regulate the system operating at desired thermal comfort level despite disturbances from the solar thermal plant system, the borehole geo-thermal energy storage system and/or the district heating loop system. Finally, the performance of the servo controller and frequency analysis of the plant is given in simulation results section.

Suggested Citation

  • Xu, Qingqing & Dubljevic, Stevan, 2017. "Modelling and control of solar thermal system with borehole seasonal storage," Renewable Energy, Elsevier, vol. 100(C), pages 114-128.
  • Handle: RePEc:eee:renene:v:100:y:2017:i:c:p:114-128
    DOI: 10.1016/j.renene.2016.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    2. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahui Tian & Xiaoli Luan & Fei Liu & Stevan Dubljevic, 2018. "Model Predictive Control of Mineral Column Flotation Process," Mathematics, MDPI, vol. 6(6), pages 1-17, June.
    2. Maragna, Charles & Rey, Charlotte & Perreaux, Marc, 2023. "A novel and versatile solar Borehole Thermal Energy Storage assisted by a Heat Pump. Part 1: System description," Renewable Energy, Elsevier, vol. 208(C), pages 709-725.
    3. Fiorentini, Massimo & Heer, Philipp & Baldini, Luca, 2023. "Design optimization of a district heating and cooling system with a borehole seasonal thermal energy storage," Energy, Elsevier, vol. 262(PB).
    4. Wołoszyn, Jerzy, 2020. "Global sensitivity analysis of borehole thermal energy storage efficiency for seventeen material, design and operating parameters," Renewable Energy, Elsevier, vol. 157(C), pages 545-559.
    5. Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
    6. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    5. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    6. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    7. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    8. Syed M. Hussain & Wasim Jamshed & Rabia Safdar & Faisal Shahzad & Nor Ain Azeany Mohd Nasir & Ikram Ullah, 2023. "Chemical reaction and thermal characteristiecs of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno's model," Energy & Environment, , vol. 34(5), pages 1409-1432, August.
    9. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    10. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    11. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    12. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    13. El Kouche, Amal & Ortegón Gallego, Francisco, 2022. "Modeling and numerical simulation of a parabolic trough collector using an HTF with temperature dependent physical properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 430-451.
    14. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    15. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    16. Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
    17. Lobón, David H. & Valenzuela, Loreto, 2013. "Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation," Energy, Elsevier, vol. 61(C), pages 502-512.
    18. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    19. Yang, Xiaoping & Yang, Xiaoxi & Ding, Jing & Shao, Youyuan & Fan, Hongbo, 2012. "Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower," Applied Energy, Elsevier, vol. 90(1), pages 142-147.
    20. Boukelia, Taqiy eddine & Mecibah, Mohamed-Salah, 2013. "Parabolic trough solar thermal power plant: Potential, and projects development in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 288-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:100:y:2017:i:c:p:114-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.