IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i7p868-875.html
   My bibliography  Save this article

An optimal replacement policy for a repairable system based on its repairman having vacations

Author

Listed:
  • Yuan, Li
  • Xu, Jian

Abstract

This paper studies a cold standby repairable system with two different components and one repairman who can take multiple vacations. If there is a component which fails and the repairman is on vacation, the failed component will wait for repair until the repairman is available. In the system, assume that component 1 has priority in use. After repair, component 1 follows a geometric process repair, while component 2 can be repaired as good as new after failures. Under these assumptions, a replacement policy N based on the failed times of component 1 is studied. The system will be replaced if the failure times of component 1 reach N. The explicit expression of the expected cost rate is given, so that the optimal replacement time Nâ Ž is determined. Finally, a numerical example is given to illustrate the theoretical results of the model.

Suggested Citation

  • Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:7:p:868-875
    DOI: 10.1016/j.ress.2011.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011000123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuan Lin & Wang, Guan Jun, 2009. "A geometric process repair model for a repairable cold standby system with priority in use and repair," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1782-1787.
    2. Zhang, Yuan Lin & Wang, Guan Jun, 2007. "A deteriorating cold standby repairable system with priority in use," European Journal of Operational Research, Elsevier, vol. 183(1), pages 278-295, November.
    3. de Smidt-Destombes, Karin S. & van der Heijden, Matthieu C. & van Harten, Aart, 2007. "Availability of k-out-of-N systems under block replacement sharing limited spares and repair capacity," International Journal of Production Economics, Elsevier, vol. 107(2), pages 404-421, June.
    4. Zhang, Tieling & Xie, Min & Horigome, Michio, 2006. "Availability and reliability of k-out-of-(M+N):G warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 381-387.
    5. Yeo, Wee Meng & Yuan, Xue-Ming, 2009. "Optimal warranty policies for systems with imperfect repair," European Journal of Operational Research, Elsevier, vol. 199(1), pages 187-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal loading of system with random repair time," European Journal of Operational Research, Elsevier, vol. 247(1), pages 137-143.
    3. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    4. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Yu, Miaomiao & Tang, Yinghui & Liu, Liping & Cheng, Jiang, 2013. "A phase-type geometric process repair model with spare device procurement and repairman’s multiple vacations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 310-323.
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal backup frequency in system with random repair time," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 12-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    2. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    3. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    4. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    5. Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 3-12, January.
    6. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Huber, Sebastian & Spinler, Stefan, 2012. "Pricing of full-service repair contracts," European Journal of Operational Research, Elsevier, vol. 222(1), pages 113-121.
    10. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    11. Khatab, A. & Nahas, N. & Nourelfath, M., 2009. "Availability of K-out-of-N:G systems with non-identical components subject to repair priorities," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 142-151.
    12. Çekyay, B. & Özekici, S., 2010. "Mean time to failure and availability of semi-Markov missions with maximal repair," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1442-1454, December.
    13. Mitra, Amitava, 2021. "Warranty parameters for extended two-dimensional warranties incorporating consumer preferences," European Journal of Operational Research, Elsevier, vol. 291(2), pages 525-535.
    14. Wei Xie & Haitao Liao, 2013. "Some aspects in estimating warranty and post‐warranty repair demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 499-511, September.
    15. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    18. Wang, Naichao & Li, Mingyuan & Xiao, Boping & Ma, Lin, 2019. "Availability analysis of a general time distribution system with the consideration of maintenance and spares," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    19. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    20. Hooti, Fatemeh & Ahmadi, Jafar & Longobardi, Maria, 2020. "Optimal extended warranty length with limited number of repairs in the warranty period," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:7:p:868-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.