IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i1d10.1007_s11009-024-10078-x.html
   My bibliography  Save this article

Reliability and Optimization for k-out-of-n: G Mixed Standby Retrial System with Dependency and J-Vacation

Author

Listed:
  • Qi Shao

    (Yanshan University)

  • Linmin Hu

    (Yanshan University)

  • Fan Xu

    (Yanshan University)

Abstract

Based on the design and potential application of wind-solar storage intelligent power generation systems in engineering practice, this paper develops a novel reliability model of k-out-of-n: G mixed standby retrial system with failure dependency and J-vacation policy. The working components in the system have redundant dependencies. When any component of the system fails and the repairman is working or on vacation, the failed component goes into the retrial space. If the retrial space has no failed components, the idle repairman goes on vacation, which may last for up to J consecutive vacations, until at a minimum one failed component appears in the retrial space on a vacation return. Firstly, the performance indexes of the system under steady state are analyzed based on the Markov process theory. Secondly, an algorithm for modelling the failure process of the proposed model is developed through a Monte Carlo method, and numerical solutions for the reliability function and mean time to first failure (MTTFF) are presented. Then, some numerical examples are provided to demonstrate the influence of different parameters on the system reliability indexes. Finally, a system cost optimization model based on availability control is developed, and the optimal component configuration schemes for systems with no vacations and different maximum numbers of vacations J are compared and analyzed by genetic algorithm (GA).

Suggested Citation

  • Qi Shao & Linmin Hu & Fan Xu, 2024. "Reliability and Optimization for k-out-of-n: G Mixed Standby Retrial System with Dependency and J-Vacation," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-27, March.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10078-x
    DOI: 10.1007/s11009-024-10078-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10078-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10078-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shekhar, Chandra & Kumar, Amit & Varshney, Shreekant, 2020. "Load sharing redundant repairable systems with switching and reboot delay," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. M. Vadivukarasi & K. Kalidass, 2022. "Discussion on the transient solution of single server Markovian multiple variant vacation queues with disasters," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1352-1376, December.
    3. Wu‐Lin Chen, 2018. "System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy," Systems Engineering, John Wiley & Sons, vol. 21(1), pages 59-69, January.
    4. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2020. "Cost benefit analysis of four retrial systems with warm standby units and imperfect coverage," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Shan Gao, 2023. "Availability and reliability analysis of a retrial system with warm standbys and second optional repair service," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(4), pages 1039-1057, February.
    7. Jia Xu & Liwei Liu & Kan Wu, 2023. "Analysis of a retrial queueing system with priority service and modified multiple vacations," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(17), pages 6207-6231, September.
    8. Zhang, Tieling & Xie, Min & Horigome, Michio, 2006. "Availability and reliability of k-out-of-(M+N):G warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 381-387.
    9. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Su, Peng & Wang, Guanjun & Duan, Fengjun, 2020. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Bei Wu & Lirong Cui, 2022. "On reliability analysis of a load-sharing k-out-of-n: G system with interacting Markov subsystems," International Journal of Production Research, Taylor & Francis Journals, vol. 60(7), pages 2331-2345, April.
    12. Madhu Jain & Ritu Gupta, 2018. "N-policy for redundant repairable system with multiple types of warm standbys with switching failure and vacation," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 13(4), pages 419-449.
    13. Wang, Yan & Hu, Linmin & Yang, Li & Li, Jing, 2022. "Reliability modeling and analysis for linear consecutive-k-out-of-n: F retrial systems with two maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Linmin Hu & Sijia Liu & Rui Peng & Zhaocai Liu, 2022. "Reliability and sensitivity analysis of a repairable k-out-of-n:G system with two failure modes and retrial feature," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(9), pages 3043-3064, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Wang, Yan & Hu, Linmin & Yang, Li & Li, Jing, 2022. "Reliability modeling and analysis for linear consecutive-k-out-of-n: F retrial systems with two maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Li, Mingjia & Hu, Linmin & Peng, Rui & Bai, Zhuoxin, 2021. "Reliability modeling for repairable circular consecutive-k-out-of-n: F systems with retrial feature," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Yu, Xiaoyun & Hu, Linmin & Ma, Mengrao, 2023. "Reliability measures of discrete time k-out-of-n: G retrial systems based on Bernoulli shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Hu, Zebin & Hu, Linmin & Wu, Shaomin & Yu, Xiaoyun, 2024. "Reliability assessment of discrete-time k/n(G) retrial system based on different failure types and the δ-shock model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Zhang, Changzhen & Yang, Jun & Li, Mingjia & Wang, Ning, 2024. "Reliability analysis of a two-dimensional linear consecutive-(r,s)-out-of-(m,n): F repairable system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Mahendra Devanda & Chandra Shekhar & Suman Kaswan, 2024. "Fuzzified imperfect repair redundant machine repair problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(4), pages 1483-1502, April.
    11. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    13. Jian Liu & Linmin Hu & Yiyan Zhou, 2025. "Reliability evaluation and simulation of shock model for repairable retrial systems with $$N$$ N -policy," Operational Research, Springer, vol. 25(2), pages 1-35, June.
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Co-optimizing component allocation and activation sequence in heterogeneous 1-out-of-n standby system exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Guo, Linhan & Li, Ruiyang & Wang, Yu & Yang, Jun & Liu, Yu & Chen, Yiming & Zhang, Jianguo, 2023. "Availability for multi-component k-out-of-n: G warm-standby system in series with shut-off rule of suspended animation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Standby and inspection policy optimization in systems exposed to common and operational shock processes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Standby mode transfer schedule minimizing downtime of 1-out-of-N system with storage," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Predetermined standby mode transfers in 1-out-of-N systems with resource-constrained elements," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10078-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.