IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i4d10.1007_s13198-023-01922-3.html
   My bibliography  Save this article

Fuzzified imperfect repair redundant machine repair problems

Author

Listed:
  • Mahendra Devanda

    (Birla Institute of Technology and Science Pilani, Pilani Campus)

  • Chandra Shekhar

    (Birla Institute of Technology and Science Pilani, Pilani Campus)

  • Suman Kaswan

    (Birla Institute of Technology and Science Pilani, Pilani Campus)

Abstract

The implication of machine repair problems in the continued functioning of real-time machining models keeps growing with the advent of technology for socioeconomic progression, mobility, security, and safety. The uninterrupted functioning of critical appliances, monitoring controllers, next-generation devices, workstations, and data exchange systems is expected whenever needed prompt. When active units fail, the results may be catastrophic, injury, or loss, leading to critical reliability challenges that must be resolved. This article aims to provide a comprehensive, state-of-the-art study for failure/repair/operation uncertainties and impreciseness in optimistic and pessimistic conditions. We consider the fault-tolerant machining system consisting of two-active units, a single-warm standby unit, and a single-repair facility in a fuzzy environment governing the involved imperfectness, vagueness, uncertainty. Switching the standby unit to the failed active unit is also subject to failure. The notion of imperfect repair makes the proposed model more insightful. A membership grade function of the reliability characteristics: mean time-to-failure and system availability are constructed to study uncertainties in-depth for the fault-tolerant redundant repairable system with switching failure and imperfect repair for well to poor design. The nonlinear parametric program technique converts the studied problem into a set of conventional problems. It is employed to compute the upper and lower bounds of the reliability characteristic based on the $$\gamma$$ γ -cut approach and Zadeh’s extension principle for extreme design constrained limits. Extensive numerical simulations are also performed for the different sets of governing parameters ranging from well-conditioned to ill-conditioned. The concluding remarks and future scopes are also included.

Suggested Citation

  • Mahendra Devanda & Chandra Shekhar & Suman Kaswan, 2024. "Fuzzified imperfect repair redundant machine repair problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(4), pages 1483-1502, April.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:4:d:10.1007_s13198-023-01922-3
    DOI: 10.1007/s13198-023-01922-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-01922-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-01922-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. S. Srinivasan, 1966. "The Effect of Standby Redundancy in System’s Failure with Repair Maintenance," Operations Research, INFORMS, vol. 14(6), pages 1024-1036, December.
    2. Shekhar, Chandra & Kumar, Amit & Varshney, Shreekant, 2020. "Load sharing redundant repairable systems with switching and reboot delay," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Wu‐Lin Chen, 2018. "System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy," Systems Engineering, John Wiley & Sons, vol. 21(1), pages 59-69, January.
    4. Lola Coleman Goheen, 1977. "On the Optimal Operating Policy for the Machine Repair Problem When Failure and Repair Times Have Erlang Distribution," Operations Research, INFORMS, vol. 25(3), pages 484-492, June.
    5. Ke, Jau-Chuan & Liu, Tzu-Hsin & Yang, Dong-Yuh, 2018. "Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 12-18.
    6. S. Christian Albright, 1980. "Optimal maintenance‐repair policies for the machine repair problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(1), pages 17-27, March.
    7. S. Srinivasan & R. Subramanian, 2006. "Reliability analysis of a three unit warm standby redundant system with repair," Annals of Operations Research, Springer, vol. 143(1), pages 227-235, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Gao, Shan & Wang, Jinting & Zhang, Jie, 2023. "Reliability analysis of a redundant series system with common cause failures and delayed vacation," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Qi Shao & Linmin Hu & Fan Xu, 2024. "Reliability and Optimization for k-out-of-n: G Mixed Standby Retrial System with Dependency and J-Vacation," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-27, March.
    6. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Li, Mingjia & Hu, Linmin & Wu, Shaomin & Zhao, Bing & Wang, Yan, 2023. "Reliability assessment for consecutive-k-out-of-n: F retrial systems under Poisson shocks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    9. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    10. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.
    11. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    13. Sharifi, Mani & Taghipour, Sharareh & Abhari, Abdolreza, 2021. "Inspection interval optimization for a k-out-of-n load sharing system under a hybrid mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    15. F. A. Van Der Duyn Schouten & P. Wartenhorst, 1993. "A two‐machine repair model with variable repair rate," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 495-523, June.
    16. R. K. Bhardwaj & Komaldeep Kaur & S. C. Malik, 2017. "Reliability indices of a redundant system with standby failure and arbitrary distribution for repair and replacement times," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 423-431, June.
    17. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    19. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    20. Delasay, Mohammad & Kolfal, Bora & Ingolfsson, Armann, 2012. "Maximizing throughput in finite-source parallel queue systems," European Journal of Operational Research, Elsevier, vol. 217(3), pages 554-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:4:d:10.1007_s13198-023-01922-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.