IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i10p1331-1357.html
   My bibliography  Save this article

Calibration, validation, and sensitivity analysis: What's what

Author

Listed:
  • Trucano, T.G.
  • Swiler, L.P.
  • Igusa, T.
  • Oberkampf, W.L.
  • Pilch, M.

Abstract

One very simple interpretation of calibration is to adjust a set of parameters associated with a computational science and engineering code so that the model agreement is maximized with respect to a set of experimental data. One very simple interpretation of validation is to quantify our belief in the predictive capability of a computational code through comparison with a set of experimental data. Uncertainty in both the data and the code are important and must be mathematically understood to correctly perform both calibration and validation. Sensitivity analysis, being an important methodology in uncertainty analysis, is thus important to both calibration and validation. In this paper, we intend to clarify the language just used and express some opinions on the associated issues. We will endeavor to identify some technical challenges that must be resolved for successful validation of a predictive modeling capability. One of these challenges is a formal description of a “model discrepancy†term. Another challenge revolves around the general adaptation of abstract learning theory as a formalism that potentially encompasses both calibration and validation in the face of model uncertainty.

Suggested Citation

  • Trucano, T.G. & Swiler, L.P. & Igusa, T. & Oberkampf, W.L. & Pilch, M., 2006. "Calibration, validation, and sensitivity analysis: What's what," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1331-1357.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1331-1357
    DOI: 10.1016/j.ress.2005.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Cox, Dennis D. & Park, Jeong-Soo & Singer, Clifford E., 2001. "A statistical method for tuning a computer code to a data base," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 77-92, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    3. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2022. "Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Park, Inseok & Grandhi, Ramana V., 2014. "A Bayesian statistical method for quantifying model form uncertainty and two model combination methods," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 46-56.
    5. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    6. Robinson, Allen C. & Drake, Richard R. & Swan, M. Scot & Bennett, Nichelle L. & Smith, Thomas M. & Hooper, Russell & Laity, George R., 2021. "A software environment for effective reliability management for pulsed power design," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    8. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    9. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    10. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2009. "Effect of delayed link failure on probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 294-310.
    11. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1374-1387.
    12. Fonoberova, Maria & Fonoberov, Vladimir A. & Mezić, Igor, 2013. "Global sensitivity/uncertainty analysis for agent-based models," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 8-17.
    13. Gomes, Eduardo & Abrantes, Patrícia & Banos, Arnaud & Rocha, Jorge, 2019. "Modelling future land use scenarios based on farmers’ intentions and a cellular automata approach," Land Use Policy, Elsevier, vol. 85(C), pages 142-154.
    14. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    15. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.
    18. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1363-1373.
    19. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nev," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 699-721.
    20. Rashad, Magdi & Żabnieńska-Góra, Alina & Norman, Les & Jouhara, Hussam, 2022. "Analysis of energy demand in a residential building using TRNSYS," Energy, Elsevier, vol. 254(PB).
    21. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    22. Perez, Liliana & Dragicevic, Suzana, 2012. "Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model," Ecological Modelling, Elsevier, vol. 231(C), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaimin Diao & Yan Wang & Dianpeng Wang, 2022. "A D-Optimal Sequential Calibration Design for Computer Models," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    2. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    4. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    5. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    6. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    7. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    10. Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Post-Print hal-04071903, HAL.
    11. David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    13. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    14. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    15. Gross, Eitan, 2015. "Effect of environmental stress on regulation of gene expression in the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 224-235.
    16. Hwang, Youngdeok & Kim, Hang J. & Chang, Won & Yeo, Kyongmin & Kim, Yongku, 2019. "Bayesian pollution source identification via an inverse physics model," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 76-92.
    17. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    18. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    19. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    20. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1331-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.