IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001644.html
   My bibliography  Save this article

A novel reliability method for assessing dam slope stability by incorporating intrinsic correlations of rockfill materials

Author

Listed:
  • Yang, Haoran
  • Chen, Chen
  • Zhao, Wenjian
  • Lu, Xiang
  • Zhang, Pengtao
  • Xue, Jianghan

Abstract

Recently, slope reliability analysis based on probabilistic theory has advanced, most of which treat material properties solely as independent variables. However, the physical and mechanical parameters of rockfill are highly interrelated, ignoring these correlations can yield in inaccurate assessments of slope stability. Therefore, a novel method incorporating intrinsic correlation between material parameters for slope reliability analysis is proposed. Initially, the statistical characteristics of 36 rockfill dams in China are analyzed to determine the best marginal distribution for each Duncan-Chang E-B model parameter using the Akaike Information Criterion. The Kendall rank correlation coefficient is then used to reveal the relationships between the parameters, based on which a multidimensional joint probability model can be established by vine copula. Finally, the surrogate model of the performance function is developed, facilitating the slope reliability analysis that incorporates intrinsic correlations. The method is applied to the DL high rockfill dam, and results indicate that neglecting intrinsic correlations increases the slope failure probability and reduces the dam slope stability, resulting in overly conservative designs. In contrast, considering interrelationships provides a more accurate representation of practical scenarios and avoids the parameter distortion.

Suggested Citation

  • Yang, Haoran & Chen, Chen & Zhao, Wenjian & Lu, Xiang & Zhang, Pengtao & Xue, Jianghan, 2025. "A novel reliability method for assessing dam slope stability by incorporating intrinsic correlations of rockfill materials," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001644
    DOI: 10.1016/j.ress.2025.110961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Jiayi & Zhou, Jianfang & Cai, Wei, 2023. "An efficient variable selection-based Kriging model method for the reliability analysis of slopes with spatially variable soils," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Fred Espen Benth & Giulia Di Nunno & Dennis Schroers, 2022. "Copula measures and Sklar's theorem in arbitrary dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1144-1183, September.
    3. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Liu, Wenli & Shao, Yixiao & Li, Chen & Li, Chengqian & Jiang, Zehao, 2023. "Development of a non-Gaussian copula Bayesian network for safety assessment of metro tunnel maintenance," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    5. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Lan, Meng & Zhu, Jiping & Lo, Siuming, 2021. "Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Pang, Rui & Yao, Haoyu & Xu, Mingyang & Zhou, Yang, 2024. "Slope displacement reliability analysis considering rock parameters spatial variability subjected to stochastic mainshock-aftershock earthquake," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Li, Dian-Qing & Tang, Xiao-Song & Phoon, Kok-Kwang, 2015. "Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 99-106.
    9. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    10. Zhang, Yi & Gomes, António Topa & Beer, Michael & Neumann, Ingo & Nackenhorst, Udo & Kim, Chul-Woo, 2019. "Reliability analysis with consideration of asymmetrically dependent variables: Discussion and application to geotechnical examples," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 261-277.
    11. Wu, Yongxin & Wang, Juncheng & Cheng, Jialiang & Yang, Shangchuan, 2024. "Dimension-Reduction Spectral Representation of Soil Spatial Variability and Its Application in the Efficient Reliability Analysis of Seismic Response in Tunnels," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Ma, Guotao & Rezania, Mohammad & Mousavi Nezhad, Mohaddeseh & Phoon, Kok-Kwang, 2024. "Multivariate copula-based framework for stochastic analysis of landslide runout distance," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Wen, Jiayi & Li, Xiaoxuan & Xue, Jingwei, 2024. "Feasibility evaluation of Copula theory for substation equipment with multiple nonlinear-related seismic response indexes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yajun & Qian, Cheng & Zhang, Bin & Xu, Nengxiong, 2024. "Reliability and landslide consequence analysis of long heterogeneous soil infrastructure slopes: A parallel computing investigation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Liang, Huangbin & Xie, Qiang, 2025. "Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2025. "Resilience evaluation of train control on-board system considering component failure correlations: Based on Apriori-Multi Layer-Copula Bayesian Network model," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Pang, Rui & Yao, Haoyu & Xu, Mingyang & Zhou, Yang, 2024. "Slope displacement reliability analysis considering rock parameters spatial variability subjected to stochastic mainshock-aftershock earthquake," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Zhao, Tengyuan & Wang, Yu, 2020. "Non-parametric simulation of non-stationary non-gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
    9. F. Durante & A. Gatto & F. Ravazzolo, 2024. "Understanding relationships with the Aggregate Zonal Imbalance using copulas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 513-554, April.
    10. Wang, Mengjiao & Liu, Jianxu & Yang, Bing, 2024. "Does the strength of the US dollar affect the interdependence among currency exchange rates of RCEP and CPTPP countries?," Finance Research Letters, Elsevier, vol. 62(PA).
    11. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    13. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    14. Steffen Nico & Dickhaus Thorsten, 2020. "Optimizing effective numbers of tests by vine copula modeling," Dependence Modeling, De Gruyter, vol. 8(1), pages 172-185, January.
    15. Chen, Yun & Wang, Jie & Jin, Lianghai & Nie, Benwu & Zheng, Xiazhong, 2024. "A hybrid approach integrating case mining (CM) and the Copula Bayesian Network (CBN) for accident causation probabilistic reasoning of building construction collapses," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Talbi, Marwa & Bedoui, Rihab & de Peretti, Christian & Belkacem, Lotfi, 2021. "Is the role of precious metals as precious as they are? A vine copula and BiVaR approaches," Resources Policy, Elsevier, vol. 73(C).
    17. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    18. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    19. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    20. Rezitis, Anthony N. & Rokopanos, Andreas, 2019. "Impact of trade liberalisation on dairy market price co-movements between the EU, Oceania, and the United States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.