IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008238.html
   My bibliography  Save this article

Multi-fidelity physics-informed convolutional neural network for heat map prediction of battery packs

Author

Listed:
  • Jiang, Yuan
  • Liu, Zheng
  • Kabirzadeh, Pouya
  • Wu, Yulun
  • Li, Yumeng
  • Miljkovic, Nenad
  • Wang, Pingfeng

Abstract

The layout of battery cells in liquid-based battery thermal management systems determines the temperature distribution within a battery pack, which, in turn, affects the safety, reliability, and efficiency of the battery system. Therefore, real-time heat map prediction is of great importance for battery design optimization and control strategy refinement. However, the scarcity of high-fidelity data as well as the imperfections of low-fidelity physics knowledge significantly hinder the accuracy of both data-driven and physic-informed machine learning (PIML) surrogate models. To tackle these challenges, this paper proposes a novel multi-fidelity physics-informed convolutional neural network (MFPI-CNN) that integrates low-fidelity domain-specific knowledge with limited high-fidelity data to provide accurate and trustworthy real-time battery heat map estimations. First, to facilitate the integration of heat transfer knowledge into machine learning models, a complex three-dimensional battery heat transfer problem is simplified to an equivalent two-dimensional representation as low-fidelity physics knowledge. Then, the MFPI-CNN with a physics-informed backbone and a high-fidelity projection head is proposed to generate battery heat maps at various fidelity levels. The backbone’s pre-training employs an unsupervised PIML framework, embedding heat transfer partial differential equations and boundary conditions within the loss function and padding modes. The high-fidelity projection head with a simplified structure is then appended to the fixed backbone and trained by limited labeled data. Both the backbone and projection head are equipped with appropriate modules and linear-weighting loss functions to normalize convergence speed. The efficacy of the model simplification is verified by various battery experiments and simulations. Comparative results and ablation studies on heat map predictions demonstrate that the proposed MFPI-CNN outperforms traditional data-driven, physics-informed, and other multi-fidelity surrogate models.

Suggested Citation

  • Jiang, Yuan & Liu, Zheng & Kabirzadeh, Pouya & Wu, Yulun & Li, Yumeng & Miljkovic, Nenad & Wang, Pingfeng, 2025. "Multi-fidelity physics-informed convolutional neural network for heat map prediction of battery packs," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008238
    DOI: 10.1016/j.ress.2024.110752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebbs-Picken, Takiah & Romero, David A. & Da Silva, Carlos M. & Amon, Cristina H., 2024. "Deep encoder–decoder hierarchical convolutional neural networks for conjugate heat transfer surrogate modeling," Applied Energy, Elsevier, vol. 372(C).
    2. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Xu, Yanwen & Bansal, Parth & Wang, Pingfeng & Li, Yumeng, 2025. "Physics-informed machine learning for system reliability analysis and design with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    4. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Cicconi, Paolo & Landi, Daniele & Germani, Michele, 2017. "Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV," Applied Energy, Elsevier, vol. 192(C), pages 159-177.
    7. Lu, Ning & Li, Yan-Feng & Mi, Jinhua & Huang, Hong-Zhong, 2024. "AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    11. Miele, S. & Karve, P. & Mahadevan, S., 2023. "Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    14. Subramanian, Abhinav & Mahadevan, Sankaran, 2023. "Probabilistic physics-informed machine learning for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Xu, Yanwen & Bansal, Parth & Wang, Pingfeng & Li, Yumeng, 2025. "Physics-informed machine learning for system reliability analysis and design with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    4. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Yang, Chen & Lu, Wanze & Xia, Yuanqing, 2023. "Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. He, Yuxuan & Zio, Enrico & Yang, Zhaoming & Xiang, Qi & Fan, Lin & He, Qian & Peng, Shiliang & Zhang, Zongjie & Su, Huai & Zhang, Jinjun, 2025. "A systematic resilience assessment framework for multi-state systems based on physics-informed neural network," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    7. Bai, Zhiwei & Song, Shufang, 2025. "Physics-based pruning neural network for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    8. Rashki, Mohsen & Faes, Matthias G.R. & Wei, Pengfei & Song, Jingwen, 2025. "Asymptotic subset simulation: An efficient extrapolation tool for small probabilities approximation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    9. Abaei, Mohammad Mahdi & Leira, Bernt Johan & Sævik, Svein & BahooToroody, Ahmad, 2024. "Integrating physics-based simulations with gaussian processes for enhanced safety assessment of offshore installations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Eischens, Reese & Li, Tao & Vogl, Gregory W. & Cai, Yi & Qu, Yongzhi, 2025. "State space neural network with nonlinear physics for mechanical system modeling," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    11. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    12. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    13. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    14. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    15. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Alaie, Omid & Maddahian, Reza & Heidarinejad, Ghassem, 2021. "Investigation of thermal interaction between shallow boreholes in a GSHE using the FLS-STRCM model," Renewable Energy, Elsevier, vol. 175(C), pages 1137-1150.
    18. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    19. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.