IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000699.html
   My bibliography  Save this article

A systematic resilience assessment framework for multi-state systems based on physics-informed neural network

Author

Listed:
  • He, Yuxuan
  • Zio, Enrico
  • Yang, Zhaoming
  • Xiang, Qi
  • Fan, Lin
  • He, Qian
  • Peng, Shiliang
  • Zhang, Zongjie
  • Su, Huai
  • Zhang, Jinjun

Abstract

Resilience is crucial for systems to maintain functionality under disturbances, especially in critical applications. However, current methods for assessing resilience in multi-state systems (MSS), particularly those modeled with Markov Repairable Processes (MRP), often face high computational costs and inefficiencies in handling complex dynamics. To address these issues, this paper proposes a systematic framework for resilience assessment of MSS whose recovery process is described as a MRP, integrated with enhanced Physics-Informed Neural Networks (PINN). In the first step of the framework, the computation of resilience indices is performed, based on the MRP of the MSS and considering the system evolution through vulnerable and recovery phases. In the second step of the framework, the enhanced PINN is integrated into the MRP solution. A typical standby MSS structure is analyzed based on the proposed framework. By gradient calibration and momentum-driving training, the computational cost is shown to be reduced by 92.4 %, compared to the eigenvector method of solution. The approach is adaptable to other safety-critical systems, offering a robust tool for more effective resilience evaluation and system optimization.

Suggested Citation

  • He, Yuxuan & Zio, Enrico & Yang, Zhaoming & Xiang, Qi & Fan, Lin & He, Qian & Peng, Shiliang & Zhang, Zongjie & Su, Huai & Zhang, Jinjun, 2025. "A systematic resilience assessment framework for multi-state systems based on physics-informed neural network," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000699
    DOI: 10.1016/j.ress.2025.110866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Multiplex networks in resilience modeling of critical infrastructure systems: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    4. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Liu, Juncai & Tian, Li & Yang, Meng & Meng, Xiangrui, 2024. "Probabilistic framework for seismic resilience assessment of transmission tower-line systems subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Nogal, Maria & O'Connor, Alan & Caulfield, Brian & Martinez-Pastor, Beatriz, 2016. "Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 84-96.
    7. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    8. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    9. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. An, Xu & Yin, Zhiming & Tong, Qi & Fang, Yiping & Yang, Ming & Yang, Qiaoqiao & Meng, Huixing, 2023. "An integrated resilience assessment methodology for emergency response systems based on multi-stage STAMP and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    11. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Tan, Zhizhong & Wu, Bei & Che, Ada, 2023. "Resilience modeling for multi-state systems based on Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Abba, Badamasi & Wu, Jinbiao & Muhammad, Mustapha, 2024. "A robust multi-risk model and its reliability relevance: A Bayes study with Hamiltonian Monte Carlo methodology," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Wu, Bei & Limnios, Nikolaos, 2024. "A comparative study of numerical methods for reliability assessment based on semi-Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    18. Sun, Hao & Yang, Ming & Zio, Enrico & Li, Xinhong & Lin, Xiaofei & Huang, Xinjie & Wu, Qun, 2024. "A simulation-based approach for resilience assessment of process system: A case of LNG terminal system," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    19. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    21. Dui, Hongyan & Lu, Yaohui & Wu, Shaomin, 2024. "Competing risks-based resilience approach for multi-state systems under multiple shocks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    22. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    23. Wang, Nanxi & Yuen, Kum Fai, 2022. "Resilience assessment of waterway transportation systems: Combining system performance and recovery cost," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    24. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    25. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    26. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    27. Shen, Yahao & Lv, Hong & Hu, Yaqi & Li, Jianwei & Lan, Hao & Zhang, Cunman, 2023. "Preliminary hazard identification for qualitative risk assessment on onboard hydrogen storage and supply systems of hydrogen fuel cell vehicles," Renewable Energy, Elsevier, vol. 212(C), pages 834-854.
    28. Zhang, Chi & Shafieezadeh, Abdollah, 2022. "Simulation-free reliability analysis with active learning and Physics-Informed Neural Network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    29. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Sun, Hao & Yang, Ming & Zio, Enrico & Li, Xinhong & Lin, Xiaofei & Huang, Xinjie & Wu, Qun, 2024. "A simulation-based approach for resilience assessment of process system: A case of LNG terminal system," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Liu, Jiaying & Zhang, Jun & Tian, Qingfeng & Wu, Bei, 2025. "Resilience evaluation of multi-feature system based on hidden Markov model," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Du, Jianwei & Ren, Gang & Cui, Jialei & Cao, Qi & Wang, Jian & Wu, Chenyang & Zhang, Jiefei, 2025. "Monitoring of operational resilience on urban road network: A Shaoxing case study," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    6. Cerqueti, Roy & Ferraro, Giovanna & Iovanella, Antonio, 2019. "Measuring network resilience through connection patterns," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 320-329.
    7. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Nogal, M. & Honfi, D., 2019. "Assessment of road traffic resilience assuming stochastic user behaviour," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 72-83.
    10. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    12. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Hu, Gengshuo & Pan, Xing & Jiao, Jian, 2025. "Resilience modeling and evaluation of multi-state system with common bus performance sharing under dynamic reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Wang, Feng & Tian, Jin & Shi, Chenli & Ling, Jiamu & Chen, Zian & Xu, Zhengguo, 2024. "A multi-stage quantitative resilience analysis and optimization framework considering dynamic decisions for urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Tamburini, Federica & Iaiani, Matteo & Cozzani, Valerio, 2025. "Analysis of system resilience in escalation scenarios involving LH2 bunkering operations," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    19. Tan, Zhizhong & Wu, Bei & Che, Ada, 2023. "Resilience modeling for multi-state systems based on Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.