IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics095183202300755x.html
   My bibliography  Save this article

An adaptive structural dominant failure modes searching method based on graph neural network

Author

Listed:
  • Tian, Yuxuan
  • Guan, Xiaoshu
  • Sun, Huabin
  • Bao, Yuequan

Abstract

Dominant failure modes (DFMs) of structural systems are integral to life prediction and reliability assessment. However, the computational efficiency of existing DFMs searching methods is constrained by neglecting the structural non-Euclidean properties. To break free from this shackle, this paper proposes a DFMs searching algorithm based on the graph neural network (GNN). The proposed algorithm can adaptively identify graph samples representing DFMs via completing graph classification. First, the target structural system is converted into an undirected graph to preserve its topological features. Second, a hierarchical graph attention mechanism is developed to establish the mapping relationship between structure intrinsic properties and DFMs. Finally, two adaptive sample selection strategies are devised to iteratively search DFMs and supplement graph datasets. In order to reduce the number of reliability analyses, the algorithm will terminate prematurely when unable to identify new DFMs. A 2D truss and a 3D frame are selected to test the computational efficiency and stability of the algorithm. The search results indicate that, despite providing different initial training sets, this GNN-based algorithm still converges to DFMs consistent with the result of Monte Carlo Simulation (MCS). Compared to the genetic algorithm (GA) and the β-unzipping method, the proposed algorithm exhibits higher computational efficiency.

Suggested Citation

  • Tian, Yuxuan & Guan, Xiaoshu & Sun, Huabin & Bao, Yuequan, 2024. "An adaptive structural dominant failure modes searching method based on graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300755x
    DOI: 10.1016/j.ress.2023.109841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300755X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300755x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.