IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v220y2022ics0951832021007663.html
   My bibliography  Save this article

An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties

Author

Listed:
  • Mi, Jinhua
  • Lu, Ning
  • Li, Yan-Feng
  • Huang, Hong-Zhong
  • Bai, Libing

Abstract

Redundant design has been widely used in aerospace systems, nuclear systems, etc. which calls for particular attention to common cause failure problems in such systems with various kinds of redundant mechanisms. Besides, imprecision and epistemic uncertainties also need to be taken into account for system reliability modeling and assessment. In this paper, a comprehensive study based on the evidential network is performed for the reliability analysis of complex systems with common cause failures and mixed uncertainties. The decomposed partial α-factor is used to separate the contribution of independent parts and common cause parts of basic failure events. Mixed uncertainties are quantified and expressed by the D-S evidence theory, and the system reliability with uncertainties is modeled by evidential network. Furthermore, two layers, i.e. a decomposed event layer and coupling layer, are embedded into the evidential network of the system, and, as a result, the hierarchical structure of system reliability is constructed. The importance and sensitivities of various component types and their impact on system reliability are detected. The presented evidential network-based hierarchical method is applied to analyze the reliability of an auxiliary power supply system of a train and the results demonstrate the effectiveness of this method.

Suggested Citation

  • Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007663
    DOI: 10.1016/j.ress.2021.108295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
    2. Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
    3. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Jinhua Mi & Yan-Feng Li & Weiwen Peng & Hong-Zhong Huang, 2018. "Reliability Analysis of Complex Multi-state System with Common Cause Failure Based on DS Evidence Theory and Bayesian Network," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 19-38, Springer.
    5. Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.
    6. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 814-824.
    7. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.
    8. Madhu Jain, 2013. "Availability prediction of imperfect fault coverage system with reboot and common cause failure," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 17(3), pages 374-397.
    9. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    11. Qiu, Siqi & Ming, Xinguo, 2020. "An extended Birnbaum importance-based two-stage heuristic for component assignment problems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Jin-Zhang Jia & Zhuang Li & Peng Jia & Zhi-guo Yang, 2020. "Reliability Analysis of Common Cause Failure Multistate System Based on CUGF," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, May.
    13. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    14. Ferson, Scott & Troy Tucker, W., 2006. "Sensitivity analysis using probability bounding," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1435-1442.
    15. Jian-Ping Yang & Hong-Zhong Huang & Yu Liu & Yan-Feng Li, 2015. "Quantification Classification Algorithm of Multiple Sources of Evidence," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 1017-1034.
    16. Zhaojun Yang & Xiaoxu Li & Chuanhai Chen & Hongxun Zhao & Dingyu Yang & Jinyan Guo & Wei Luo, 2019. "Reliability assessment of the spindle systems with a competing risk model," Journal of Risk and Reliability, , vol. 233(2), pages 226-234, April.
    17. Simon, C. & Weber, P. & Evsukoff, A., 2008. "Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 950-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Deng, Wanyi, 2023. "Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Bao, Han & Zhang, Hongbin & Shorthill, Tate & Chen, Edward & Lawrence, Svetlana, 2023. "Quantitative evaluation of common cause failures in high safety-significant safety-related digital instrumentation and control systems in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    4. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Jinhua Mi & Yuhua Cheng & Yufei Song & Libing Bai & Kai Chen, 2022. "Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions," Annals of Operations Research, Springer, vol. 311(1), pages 311-333, April.
    8. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    9. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    11. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    12. Ying-Kui Gu & Chao-Jun Fan & Ling-Qiang Liang & Jun Zhang, 2022. "Reliability calculation method based on the Copula function for mechanical systems with dependent failure," Annals of Operations Research, Springer, vol. 311(1), pages 99-116, April.
    13. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    15. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.
    17. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Guang-Jun Jiang & Hong-Xia Chen & Le Gao & Hong-Hua Sun & Qing-Yang Li, 2022. "Reliability analysis on ammonium nitrate/fuel oil explosive vehicle pharmaceutical system based on dynamic fault tree and Bayesian network," Annals of Operations Research, Springer, vol. 311(1), pages 167-182, April.
    19. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.