IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i2p204-219.html
   My bibliography  Save this article

An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge

Author

Listed:
  • Yang Liu
  • Naiwei Lu
  • Xinfeng Yin
  • Mohammad Noori

Abstract

Engineering structures are most statically indeterminate structures consisting of various types of components and their failure modes exhibit randomness under random loads. A new adaptive support vector regression method is proposed for structural system reliability assessment. Compared with traditional support vector regression, the proposed adaptive support vector regression method involves two updating procedures to estimate structural limit state functions. Three verification examples involving a nonlinear limit state function, a truss bridge structure, and a geometrically nonlinear suspended structure are provided to illustrate the accuracy and the efficiency of the adaptive support vector regression method. A pre-stressed concrete cable-stayed bridge is utilized to demonstrate the applicability of the proposed method. The verification studies show that the proposed adaptive support vector regression method is an efficient method with reasonable accuracy for problems where closed-form failure functions are not available and the failure sequences exist in the structural system. The main failure sequences of the cable-stayed bridge are identified. The application studies of the cable-stayed bridge indicate that (a) the foremost failure sequence is the strength failure of side-span cables followed by the bending failure of towers and (b) the secondary failure sequence is the strength failure of mid-span cables followed by bending failure of mid-span girders.

Suggested Citation

  • Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:2:p:204-219
    DOI: 10.1177/1748006X15623869
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X15623869
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X15623869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dai, Hongzhe & Zhang, Hao & Wang, Wei, 2012. "A support vector density-based importance sampling for reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 86-93.
    2. Kang, Won-Hee & Song, Junho & Gardoni, Paolo, 2008. "Matrix-based system reliability method and applications to bridge networks," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1584-1593.
    3. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    4. Lee, Young-Joo & Song, Junho, 2012. "Finite-element-based system reliability analysis of fatigue-induced sequential failures," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 131-141.
    5. Kim, Dong-Seok & Ok, Seung-Yong & Song, Junho & Koh, Hyun-Moo, 2013. "System reliability analysis using dominant failure modes identified by selective searching technique," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 316-331.
    6. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    7. Yang Liu & Naiwei Lu & Mohammad Noori & Xinfeng Yin, 2014. "System reliability-based optimisation for truss structures using genetic algorithm and neural network," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 8(1), pages 51-69.
    8. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    9. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    4. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    5. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    6. Kim, Dong-Seok & Ok, Seung-Yong & Song, Junho & Koh, Hyun-Moo, 2013. "System reliability analysis using dominant failure modes identified by selective searching technique," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 316-331.
    7. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Marseguerra, M., 2014. "Early detection of gradual concept drifts by text categorization and Support Vector Machine techniques: The TRIO algorithm," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 1-9.
    10. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.
    11. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    12. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    13. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    15. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2021. "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1231-1254, January.
    17. Kim, Youngsuk & Kang, Won-Hee, 2013. "Network reliability analysis of complex systems using a non-simulation-based method," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 80-88.
    18. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    19. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:2:p:204-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.