IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006026.html
   My bibliography  Save this article

Identifying and quantifying a complete set of full-power initiating events during early design stages of high-temperature gas-cooled reactors

Author

Listed:
  • Hamza, Mostafa
  • Joslin, Nick
  • Lawson, Glen
  • McSweeney, Luke
  • Liao, Huafei
  • Vivanco, Alaina
  • Diaconeasa, Mihai A.

Abstract

Identifying initiating events is the first step in building a probabilistic risk assessment model. The history of commercial nuclear power plant is primarily light-water reactors, hence, a comprehensive set of possible initiating events that covers most available light-water reactors is identified allowing for a frequentist approach to estimating their associated frequencies. However, other technologies of nuclear power plants do not share the same operating experience, hence, there are no comprehensive lists of initiating events for non-light-water reactors. This paper presents an approach that utilizes top-down deductive methodologies, master logic diagrams, and heat balance fault trees; the bottom-up inductive methodology of failure modes and effects analysis; and legacy and contemporary information to identify a complete list of initiating events for the Xe-100 high-temperature gas-cooled reactor (HTGR). Moreover, the paper presents the approach on how to estimate the frequencies using legacy sources along with deterministic analysis and fault trees. Furthermore, the paper presents an approach to estimate uncertainty parameters associated with each of these initiating events using constrained non-informative distributions to account for lack of operating experience. Finally, the paper presents the list of identified initiating events for the Xe-100 along with their frequencies and uncertainty parameters which serves, along with other contemporary sources, as another building block in having a comprehensive set of initiating events for HTGRs.

Suggested Citation

  • Hamza, Mostafa & Joslin, Nick & Lawson, Glen & McSweeney, Luke & Liao, Huafei & Vivanco, Alaina & Diaconeasa, Mihai A., 2024. "Identifying and quantifying a complete set of full-power initiating events during early design stages of high-temperature gas-cooled reactors," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006026
    DOI: 10.1016/j.ress.2023.109688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.