IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003325.html
   My bibliography  Save this article

Demonstration of the E-BEPU methodology for SL-LOCA in a Gen-III PWR reactor

Author

Listed:
  • Mazgaj, Piotr
  • Darnowski, Piotr
  • Kaszko, Aleksej
  • Hortal, Javier
  • Dusic, Milorad
  • Mendizábal, Rafael
  • Pelayo, Fernando

Abstract

The paper presents the first practical application of the alternative Extended Best Estimate Plus Uncertainty (E-BEPU) methodology. The E-BEPU is the systematic risk-informed combined deterministic and probabilistic methodology dedicated to design verification of Nuclear Power Plants. The approach covers applying the best-estimate computer code, realistic input data for initial and boundary conditions with uncertainties, and plant systems availability based on Probabilistic Safety Analysis methods. Furthermore, it extends the scope of the uncertainty analysis to include the availability of safety systems as an additional uncertain item. The approach is characterized by an enhanced Defence-in-Depth; it can detect cliff-edge effects and include risk insights in the deterministic analysis framework. It is an advanced approach to Deterministic Safety Analysis beyond the BEPU approaches and an alternative realization of the Extended-BEPU. In this study, the generic Generation-III Pressurized Water Reactor design was investigated to demonstrate the methodology with a practical example. The Postulated Initiating Event was a surge line double-ended break (SL-LOCA), a variant of the Large Break Loss of Coolant Accident (LB-LOCA), and considered an example of the Design Basis Event. The considered reactor design passed successfully through the procedure with a large margin due to the robustness of its safety systems.

Suggested Citation

  • Mazgaj, Piotr & Darnowski, Piotr & Kaszko, Aleksej & Hortal, Javier & Dusic, Milorad & Mendizábal, Rafael & Pelayo, Fernando, 2022. "Demonstration of the E-BEPU methodology for SL-LOCA in a Gen-III PWR reactor," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003325
    DOI: 10.1016/j.ress.2022.108707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galushin, Sergey & Grishchenko, Dmitry & Kudinov, Pavel, 2020. "Implementation of framework for assessment of severe accident management effectiveness in Nordic BWR," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Zugazagoitia, Eneko & Queral, Cesar & Fernández-Cosials, Kevin & Gómez, Javier & Durán, Luis Felipe & Sánchez-Torrijos, Jorge & Posada, José María, 2020. "Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Queral, Cesar & Fernández-Cosials, Kevin & Zugazagoitia, Eneko & Paris, Carlos & Magan, Javier & Mendizabal, Rafael & Posada, Jose, 2021. "Application of Expanded Event Trees combined with uncertainty analysis methodologies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Martorell, S. & Sánchez-Sáez, F. & Villanueva, J.F. & Carlos, S., 2017. "An extended BEPU approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 474-483.
    5. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2020. "Joint optimization of safety barriers for enhancing business continuity of nuclear power plants against steam generator tube ruptures accidents," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Borysiewicz, Mieczysław & Kowal, Karol & Potempski, Sławomir, 2015. "An application of the value tree analysis methodology within the integrated risk informed decision making for the nuclear facilities," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 113-119.
    8. Sanchez-Saez, F. & Sánchez, A.I. & Villanueva, J.F. & Carlos, S. & Martorell, S., 2018. "Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 19-28.
    9. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Martorell, S. & Martorell, P. & Martón, I. & Sánchez, A.I. & Carlos, S., 2017. "An approach to address probabilistic assumptions on the availability of safety systems for deterministic safety analysis," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 136-150.
    11. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Queral, Cesar & Fernández-Cosials, Kevin & Zugazagoitia, Eneko & Paris, Carlos & Magan, Javier & Mendizabal, Rafael & Posada, Jose, 2021. "Application of Expanded Event Trees combined with uncertainty analysis methodologies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Kang, Dong Gu, 2020. "Comparison of statistical methods and deterministic sensitivity studies for investigation on the influence of uncertainty parameters: Application to LBLOCA," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Reyes-Fuentes, Melisa & del-Valle-Gallegos, Edmundo & Duran-Gonzalez, Julian & Ortíz-Villafuerte, Javier & Castillo-Durán, Rogelio & Gómez-Torres, Armando & Queral, Cesar, 2021. "AZTUSIA: A new application software for Uncertainty and Sensitivity analysis for nuclear reactors," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S. & Sanchez-Saez, F. & Saiz, M., 2018. "Evaluation of risk impact of completion time changes combining PSA and DSA model insight and human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 97-107.
    9. Pakonen, Antti & Buzhinsky, I & Björkman, K, 2021. "Model checking reveals design issues leading to spurious actuation of nuclear instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Tolo, Silvia & Tian, Xiange & Bausch, Nils & Becerra, Victor & Santhosh, T.V. & Vinod, G. & Patelli, Edoardo, 2019. "Robust on-line diagnosis tool for the early accident detection in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 110-119.
    12. Zugazagoitia, Eneko & Queral, Cesar & Fernández-Cosials, Kevin & Gómez, Javier & Durán, Luis Felipe & Sánchez-Torrijos, Jorge & Posada, José María, 2020. "Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Li, Xinbo & Gong, Jinxin, 2024. "Probabilistic evaluation of the leak-tightness function of the nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Nejad, Hamed S. & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Automatic generation of event sequence diagrams for guiding simulation based dynamic probabilistic risk assessment (SIMPRA) of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Kumar, Suman & Saxena, Sanchit & Sharma, Hrishikesh & Gangolu, Jaswanth & Prabhu, T. Ajeeth, 2023. "Development of design guidelines using probabilistic framework for the development of smart thickening fluid based ultra resistant adaptive kinematic soft human armor (SURAKSHA)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Manjengwa, Evelyn Ruvimbo & Dorfling, Christie & Tadie, Margreth, 2023. "Development of a conceptual framework to evaluate factors that affect drivers for stakeholder engagement in mine waste management," Resources Policy, Elsevier, vol. 81(C).
    20. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.