IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007865.html
   My bibliography  Save this article

Development and uncertainty analysis of the dynamic simulation for HFETR with BMUS framework

Author

Listed:
  • Zeng, Wenjie
  • Li, Xiaoyu
  • Guo, Chong
  • Li, Zhifeng

Abstract

In this work, a new approach for uncertainty quantification and sensitivity analysis of research reactor safety is developed, named the BMUS (the Bootstrap and Morris methods for Uncertainty quantification and Sensitivity analysis) framework. The BMUS framework has significant advantages in dealing with small sample sizes, unknown distribution functions, and different dimensions of the input parameters. To verify that the BMUS framework is operational, the uncertainty analysis of High Flux Engineering Test Reactor (HFETR) is conducted under a reactivity insertion hypothetical accident (50 pcm step reactivity perturbation). A Dynamic Analysis of Research Reactor (DARR) simulation tool is established and its accuracy is verified under three hypothetical accidents. During the transient process, the uncertainty quantification results show that the input parameters cause uncertainties in the output parameters, which may lead to power oscillations and sudden temperature changes in the research reactor. The sensitivity analysis results indicate that the strongest correlation is between the core heat transfer coefficient and the secondary outlet temperature. HFETR is moderate sensitive to most of the input parameters, and the highest sensitivity to the heat exchanger heat transfer coefficient.

Suggested Citation

  • Zeng, Wenjie & Li, Xiaoyu & Guo, Chong & Li, Zhifeng, 2025. "Development and uncertainty analysis of the dynamic simulation for HFETR with BMUS framework," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007865
    DOI: 10.1016/j.ress.2024.110715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Queral, C. & Gómez-Magán, J. & París, C. & Rivas-Lewicky, J. & Sánchez-Perea, M. & Gil, J. & Mula, J. & Meléndez, E. & Hortal, J. & Izquierdo, J.M. & Fernández, I., 2018. "Dynamic event trees without success criteria for full spectrum LOCA sequences applying the integrated safety assessment (ISA) methodology," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 152-168.
    2. Zugazagoitia, Eneko & Queral, Cesar & Fernández-Cosials, Kevin & Gómez, Javier & Durán, Luis Felipe & Sánchez-Torrijos, Jorge & Posada, José María, 2020. "Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Sanchez-Saez, F. & Sánchez, A.I. & Villanueva, J.F. & Carlos, S. & Martorell, S., 2018. "Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 19-28.
    4. Hamza, Mostafa & Joslin, Nick & Lawson, Glen & McSweeney, Luke & Liao, Huafei & Vivanco, Alaina & Diaconeasa, Mihai A., 2024. "Identifying and quantifying a complete set of full-power initiating events during early design stages of high-temperature gas-cooled reactors," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyes-Fuentes, Melisa & del-Valle-Gallegos, Edmundo & Duran-Gonzalez, Julian & Ortíz-Villafuerte, Javier & Castillo-Durán, Rogelio & Gómez-Torres, Armando & Queral, Cesar, 2021. "AZTUSIA: A new application software for Uncertainty and Sensitivity analysis for nuclear reactors," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Kang, Dong Gu, 2020. "Comparison of statistical methods and deterministic sensitivity studies for investigation on the influence of uncertainty parameters: Application to LBLOCA," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Xiong, Qingwen & Qian, Libo & Song, Gongle & Yang, Jiewei & Liu, Yu & Deng, Jian & Qiu, Zhifang, 2024. "Realistic performance assessment of FeCrAl-UN/U3Si2 accident tolerant fuel under loss-of-coolant accident scenario," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Mazgaj, Piotr & Darnowski, Piotr & Kaszko, Aleksej & Hortal, Javier & Dusic, Milorad & Mendizábal, Rafael & Pelayo, Fernando, 2022. "Demonstration of the E-BEPU methodology for SL-LOCA in a Gen-III PWR reactor," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Tolo, Silvia & Tian, Xiange & Bausch, Nils & Becerra, Victor & Santhosh, T.V. & Vinod, G. & Patelli, Edoardo, 2019. "Robust on-line diagnosis tool for the early accident detection in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 110-119.
    7. Chen, Chuqi & Li, Zheng & Li, Xiaoyu & Wang, Linna & Zeng, Wenjie, 2025. "A dynamic performance assessment of coordinated control system of small pressurized water reactor based on uncertainty quantification and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    8. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    12. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    13. Zugazagoitia, Eneko & Queral, Cesar & Fernández-Cosials, Kevin & Gómez, Javier & Durán, Luis Felipe & Sánchez-Torrijos, Jorge & Posada, José María, 2020. "Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Queral, Cesar & Fernández-Cosials, Kevin & Zugazagoitia, Eneko & Paris, Carlos & Magan, Javier & Mendizabal, Rafael & Posada, Jose, 2021. "Application of Expanded Event Trees combined with uncertainty analysis methodologies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Hamza, Mostafa & Joslin, Nick & Lawson, Glen & McSweeney, Luke & Liao, Huafei & Vivanco, Alaina & Diaconeasa, Mihai A., 2024. "Identifying and quantifying a complete set of full-power initiating events during early design stages of high-temperature gas-cooled reactors," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.