IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022001326.html
   My bibliography  Save this article

Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant

Author

Listed:
  • Kowal, Karol

Abstract

The lifetime reliability and availability for the Electrical Facility of the High Temperature Engineering Test Reactor (HTTR) have been evaluated. The impact of the electrical malfunctions on the Forced Outage Rate (FOR) of the HTTR-based electricity-hydrogen cogeneration has been determined. Normal operation and emergency conditions have been considered for the standard system design and its modified configuration of higher redundancy. The Monte Carlo method has been applied for the uncertainty assessment followed by the Fussell-Vesely importance evaluation. A novel methodological concept has been proposed for the integration of reliability and availability simulations of alternative models corresponding to several options of the system's design considered under various analytical assumptions. It provides a computational framework suitable for the incorporation of the alternative models into one simulation case driven by the common set of reliability data at each iteration step. This enables efficient comparison of the models in terms of reliability, availability, and uncertainty. The results of this work are of high practical importance for the safety and reliability of the HTTR-based cogeneration plant. The former was confirmed by the high availability of safety-related electrical loads, while the latter needs optimization to meet the industry standards concerning FOR.

Suggested Citation

  • Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001326
    DOI: 10.1016/j.ress.2022.108468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
    2. Sun, Mu-Xia & Li, Yan-Fu & Zio, Enrico, 2019. "On the optimal redundancy allocation for multi-state series–parallel systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    3. Peres, François & Bouzaïene, Leïla & Bocquet, Jean-Claude & Billy, François & Lannoy, André & Haïk, Philippe, 2007. "Anticipating aging failure using feedback data and expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 200-210.
    4. Li, Yan-Fu & Zhang, Hanxiao, 2022. "The methods for exactly solving redundancy allocation optimization for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. KanÄ ev, DuÅ¡ko & ÄŒepin, Marko & Gjorgiev, Blaže, 2014. "Development and application of a living probabilistic safety assessment tool: Multi-objective multi-dimensional optimization of surveillance requirements in NPPs considering their ageing," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 135-147.
    6. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    7. Borysiewicz, Mieczysław & Kowal, Karol & Potempski, Sławomir, 2015. "An application of the value tree analysis methodology within the integrated risk informed decision making for the nuclear facilities," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 113-119.
    8. Abdul Rahman, Fariz & Varuttamaseni, Athi & Kintner-Meyer, Michael & Lee, John C., 2013. "Application of fault tree analysis for customer reliability assessment of a distribution power system," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 76-85.
    9. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
    11. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    12. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    13. Kowal, Karol & Torabi, Mina, 2021. "Failure mode and reliability study for Electrical Facility of the High Temperature Engineering Test Reactor," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Yeh, Wei-Chang, 2019. "A novel boundary swarm optimization method for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    15. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    16. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Cho, Jaehyun & Han, Sang Hoon, 2021. "Identification of Risk-Significant Components in Nuclear Power Plants to Reduce Cs-137 Radioactive Risk," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    18. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    20. Martón, I. & Sánchez, A.I. & Martorell, S., 2015. "Ageing PSA incorporating effectiveness of maintenance and testing," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 131-140.
    21. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    22. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    23. Yeh, Wei-Chang & Zhu, Wenbo & Tan, Shi-Yi & Wang, Gai-Ge & Yeh, Yuan-Hui, 2022. "Novel general active reliability redundancy allocation problems and algorithm," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    24. Safaei, Fatemeh & Châtelet, Eric & Ahmadi, Jafar, 2020. "Optimal age replacement policy for parallel and series systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    25. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Enrico Zio & Hadi Gholinezhad, 2023. "Redundancy Allocation of Components with Time-Dependent Failure Rates," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
    4. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    6. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    9. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    11. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    12. Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Yeh, Wei-Chang & Zhu, Wenbo & Tan, Shi-Yi & Wang, Gai-Ge & Yeh, Yuan-Hui, 2022. "Novel general active reliability redundancy allocation problems and algorithm," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing partial component activation policy in multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Murat Ozkut, 2022. "Comparison of the replacement policy in k-out-of-n systems having dependent components," Journal of Risk and Reliability, , vol. 236(1), pages 125-137, February.
    17. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Safaei, Fatemeh & Ahmadi, Jafar & Taghipour, Sharareh, 2022. "A maintenance policy for a k-out-of-n system under enhancing the system’s operating time and safety constraints, and selling the second-hand components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.