IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i7p3349-d523198.html
   My bibliography  Save this article

Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice

Author

Listed:
  • Leonardo Leoni

    (Department of Industrial Engineering (DIEF), University of Florence, 50123 Florence, Italy)

  • Farshad BahooToroody

    (Department of Civil Engineering, University of Parsian, Qazvin 3176795591, Iran)

  • Saeed Khalaj

    (Department of Civil Engineering, University of Parsian, Qazvin 3176795591, Iran)

  • Filippo De Carlo

    (Department of Industrial Engineering (DIEF), University of Florence, 50123 Florence, Italy)

  • Ahmad BahooToroody

    (Marine and Arctic Technology Group, Department of Mechanical Engineering, Aalto University, 11000 Espoo, Finland)

  • Mohammad Mahdi Abaei

    (Department of Maritime and Transport Technology, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Over the last few decades, reliability analysis has attracted significant interest due to its importance in risk and asset integrity management. Meanwhile, Bayesian inference has proven its advantages over other statistical tools, such as maximum likelihood estimation (MLE) and least square estimation (LSE), in estimating the parameters characterizing failure modelling. Indeed, Bayesian inference can incorporate prior beliefs and information into the analysis, which could partially overcome the lack of data. Accordingly, this paper aims to provide a closed-mathematical representation of Bayesian analysis for reliability assessment of industrial components while investigating the effect of the prior choice on future failures predictions. To this end, hierarchical Bayesian modelling (HBM) was tested on three samples with distinct sizes, while five different prior distributions were considered. Moreover, a beta-binomial distribution was adopted to represent the failure behavior of the considered device. The results show that choosing strong informative priors leads to distinct predictions, even if a larger sample size is considered. The outcome of this research could help maintenance engineers and asset managers in integrating their prior beliefs into the reliability estimation process.

Suggested Citation

  • Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3349-:d:523198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/7/3349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/7/3349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    3. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    4. Hamzeh Soltanali & Abbas Rohani & Mohammad Hossein Abbaspour-Fard & Aditya Parida & José Torres Farinha, 2020. "Development of a risk-based maintenance decision making approach for automotive production line," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 236-251, February.
    5. Dana Kelly & Curtis Smith, 2011. "Bayesian Inference for Probabilistic Risk Assessment," Springer Series in Reliability Engineering, Springer, number 978-1-84996-187-5, December.
    6. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    7. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    8. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    9. Farshad BahooToroody & Saeed Khalaj & Leonardo Leoni & Filippo De Carlo & Gianpaolo Di Bona & Antonio Forcina, 2021. "Reliability Estimation of Reinforced Slopes to Prioritize Maintenance Actions," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    10. repec:dau:papers:123456789/1908 is not listed on IDEAS
    11. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshad BahooToroody & Saeed Khalaj & Leonardo Leoni & Filippo De Carlo & Gianpaolo Di Bona & Antonio Forcina, 2021. "Reliability Estimation of Reinforced Slopes to Prioritize Maintenance Actions," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    2. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    5. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    8. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    12. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.
    13. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    14. BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Kim, Yochan & Park, Jinkyun, 2019. "Incorporating prior knowledge with simulation data to estimate PSF multipliers using Bayesian logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 210-217.
    18. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Groth, Katrina M. & Smith, Curtis L. & Swiler, Laura P., 2014. "A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 32-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3349-:d:523198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.