IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021004762.html
   My bibliography  Save this article

An Intelligent Health diagnosis and Maintenance Decision-making approach in Smart Manufacturing

Author

Listed:
  • GAO, Guibing
  • ZHOU, Dengming
  • TANG, Hao
  • HU, Xin

Abstract

Unexpected risks and faults have made health diagnosis and maintenance decision-making of smart manufacturing difficult. Based on CPPS (cyber physical production systems) technology and the nonlinear kernel mapping algorithm,an intelligent health diagnosis and maintenance decision-making method is proposed for the equipment in smart manufacturing. The vulnerability of equipment is employed to conduct the health diagnosis strategies, the proposed method aids maintenance personnel in accurately diagnosing the equipment health and promptly implementing maintenance plans. This method enables maintenance personnel to understand the interactions within and across the equipment and identify the significant influencing factors without having to know the health degradation and potential disturbances of equipment. Moreover, the proposed intelligent health maintenance methodology can enhance equipment health by highlighting how anomalous factors are identified based on the vulnerability of the equipment and the CPPS technology. This paper discusses the main processes of the proposed methodology and demonstrates its application to a robot servo system.

Suggested Citation

  • GAO, Guibing & ZHOU, Dengming & TANG, Hao & HU, Xin, 2021. "An Intelligent Health diagnosis and Maintenance Decision-making approach in Smart Manufacturing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004762
    DOI: 10.1016/j.ress.2021.107965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiyong Yin & Jinsong Bao & Jie Zhang & Jie Li & Junliang Wang & Xiaodi Huang, 2020. "Real-time task processing for spinning cyber-physical production systems based on edge computing," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2069-2087, December.
    2. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    3. Vega, Manuel A. & Hu, Zhen & Fillmore, Travis B. & Smith, Matthew D. & Todd, Michael D., 2021. "A Novel Framework for Integration of Abstracted Inspection Data and Structural Health Monitoring for Damage Prognosis of Miter Gates," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    7. Eleftheroglou, Nick & Zarouchas, Dimitrios & Loutas, Theodoros & Alderliesten, Rene & Benedictus, Rinze, 2018. "Structural health monitoring data fusion for in-situ life prognosis of composite structures," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 40-54.
    8. Meissner, Robert & Rahn, Antonia & Wicke, Kai, 2021. "Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    10. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Gao, Guibing & Wang, Junshen & Yue, Wenhui & Ou, Wenchu, 2020. "Structural-vulnerability assessment of reconfigurable manufacturing system based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Arismendi, Renny & Barros, Anne & Grall, Antoine, 2021. "Piecewise deterministic Markov process for condition-based maintenance models — Application to critical infrastructures with discrete-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hung & Abdel-Mottaleb, Noha & Uddin, Shihab & Zhang, Qiong & Lu, Qing & Zhang, He & Li, Mingyang, 2022. "Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Najafi, Seyedvahid & Zheng, Rui & Lee, Chi-Guhn, 2021. "An optimal opportunistic maintenance policy for a two-unit series system with general repair using proportional hazards models," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    10. Dias, Luis & Leitão, Armando & Guimarães, Luis, 2021. "Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Zheng, Rui & Zhao, Xufeng & Hu, Chaoming & Ren, Xiangyun, 2023. "A repair-replacement policy for a system subject to missions of random types and random durations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.