IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021001113.html
   My bibliography  Save this article

The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis

Author

Listed:
  • de Vos, Jiri
  • Hekkenberg, Robert G.
  • Valdez Banda, Osiris A.

Abstract

The advent of autonomous ships that are unmanned or low-manned will reduce the number of people at risk at sea. Even when autonomous navigation does not reduce the number of accidents, this means that safety at sea will increase. In fact, increased safety is one of the primary perceived drivers for autonomous shipping, although this safety increase has not yet been quantified in academic literature. In this article a statistical analysis is performed to determine the distribution of human casualties and lost ships over accident types, ship types and ship sizes. Subsequently, based on several scenarios for the implementation of autonomous ships, a quantification of the estimated reduction in loss of life and loss of ships is provided. It is concluded that the implementation of autonomy on small cargo ships with a length below 120 m will have the largest safety benefit, since these ships account for the majority recorded ship losses and lives lost.

Suggested Citation

  • de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021001113
    DOI: 10.1016/j.ress.2021.107558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Utne, Ingrid Bouwer & Rokseth, Børge & Sørensen, Asgeir J. & Vinnem, Jan Erik, 2020. "Towards supervisory risk control of autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2017. "Towards the assessment of potential impact of unmanned vessels on maritime transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 155-169.
    4. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    5. Valdez Banda, Osiris A. & Kannos, Sirpa & Goerlandt, Floris & van Gelder, Pieter H.A.J.M. & Bergström, Martin & Kujala, Pentti, 2019. "A systemic hazard analysis and management process for the concept design phase of an autonomous vessel," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Wang, Shuaian & Zhen, Lu & Laporte, Gilbert, 2023. "The impact of autonomous ships in regional waterways," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    2. Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Li, Xue & Oh, Poong & Zhou, Yusheng & Yuen, Kum Fai, 2023. "Operational risk identification of maritime surface autonomous ship: A network analysis approach," Transport Policy, Elsevier, vol. 130(C), pages 1-14.
    4. Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Kurt, Ismail & Aymelek, Murat, 2024. "Operational adaptation of ports with maritime autonomous surface ships," Transport Policy, Elsevier, vol. 145(C), pages 1-10.
    10. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Adhita, I Gde Manik Sukanegara & Fuchi, Masaki & Konishi, Tsukasa & Fujimoto, Shoji, 2023. "Ship navigation from a Safety-II perspective: A case study of training-ship operation in coastal area," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Wang, Yang & Ye, Ting & Zio, Enrico & Wang, Tengfei & Wu, Bing, 2024. "A blockchain-based credibility evaluation scheme for navigational event dissemination in the internet of ships," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Fonseca, Tiago & Lagdami, Khanssa & Schröder-Hinrichs, Jens-Uwe, 2021. "Assessing innovation in transport: An application of the Technology Adoption (TechAdo) model to Maritime Autonomous Surface Ships (MASS)," Transport Policy, Elsevier, vol. 114(C), pages 182-195.
    4. BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Wang, Yang & Chen, Peng & Wu, Bing & Wan, Chengpeng & Yang, Zaili, 2022. "A trustable architecture over blockchain to facilitate maritime administration for MASS systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Gil, Mateusz, 2021. "A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad & Banda, Osiris Valdez & van Gelder, Pieter, 2022. "A probabilistic model to evaluate the resilience of unattended machinery plants in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
    11. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Li, Xue & Oh, Poong & Zhou, Yusheng & Yuen, Kum Fai, 2023. "Operational risk identification of maritime surface autonomous ship: A network analysis approach," Transport Policy, Elsevier, vol. 130(C), pages 1-14.
    13. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    18. Ismail Kurt & Murat Aymelek, 2022. "Operational and economic advantages of autonomous ships and their perceived impacts on port operations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 302-326, June.
    19. Shiokari, Megumi & Itoh, Hiroko & Yuzui, Tomohiro & Ishimura, Eiko & Miyake, Rina & Kudo, Junichi & Kawashima, Sonoko, 2024. "Structure model-based hazard identification method for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. Wenjun Zhang & Xiangkun Meng & Xue Yang & Hongguang Lyu & Xiang-Yu Zhou & Qingwu Wang, 2022. "A Practical Risk-Based Model for Early Warning of Seafarer Errors Using Integrated Bayesian Network and SPAR-H," IJERPH, MDPI, vol. 19(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021001113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.