IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics0951832020307304.html
   My bibliography  Save this article

Semiparametric and nonparametric evaluation of first-passage distribution of bivariate degradation processes

Author

Listed:
  • Palayangoda, Lochana K.
  • Ng, Hon Keung Tony

Abstract

In system engineering, the reliability of a system depends on the reliability of each subsystem. Those subsystems have their own performance characteristics (PCs) which can be dependent. The degradation of those dependent PCs of the subsystems is used to access the system reliability. Parametric frameworks have been developed to model bivariate degradation processes in the literature; however, in practical situations, the underlying degradation process of a subsystem is usually unknown. Therefore, it is desired to develop semiparametric and nonparametric approaches to model bivariate degradation processes. Here, different semiparametric and nonparametric methods are proposed to estimate the first-passage time distribution of dependence bivariate degradation data. The saddlepoint approximation and bootstrap methods are used to estimate the marginal FPT distributions empirically and the empirical copula is used to estimate the joint distribution of two dependence degradation processes nonparametrically. A Monte-Carlo simulation study is used to demonstrate the effectiveness and robustness of the proposed semiparametric and nonparametric approaches. A numerical example is presented to illustrate the methodologies developed in this paper.

Suggested Citation

  • Palayangoda, Lochana K. & Ng, Hon Keung Tony, 2021. "Semiparametric and nonparametric evaluation of first-passage distribution of bivariate degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307304
    DOI: 10.1016/j.ress.2020.107230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhengqiang Pan & Quan Sun & Jing Feng, 2016. "Reliability modeling of systems with two dependent degrading components based on gamma processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(7), pages 1923-1938, April.
    2. Narayanaswamy Balakrishnan & Chengwei Qin, 2019. "Nonparametric evaluation of the first passage time of degradation processes," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 571-590, May.
    3. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    4. Kundu, Debasis & Balakrishnan, N. & Jamalizadeh, A., 2010. "Bivariate Birnbaum-Saunders distribution and associated inference," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 113-125, January.
    5. Huibing Hao & Chun Su, 2014. "Bivariate Nonlinear Diffusion Degradation Process Modeling via Copula and MCMC," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, March.
    6. Kouros Owzar & Pranab Kumar Sen, 2003. "Copulas: concepts and novel applications," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 323-353.
    7. Lochana K. Palayangoda & Hon Keung Tony Ng & Ronald W. Butler, 2020. "Improved techniques for parametric and nonparametric evaluations of the first‐passage time for degradation processes," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 730-753, July.
    8. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Saberzadeh, Zahra & Razmkhah, Mostafa & Amini, Mohammad, 2023. "Bayesian reliability analysis of complex k-out-of-n: â„“ systems under degradation performance," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    4. Wu, Xin & Huang, Tingting & Liu, Jie, 2023. "Common stochastic effects induced multivariate degradation process with temporal dependency in degradation characteristic and unit dimensions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Jochen Ranger & Jörg-Tobias Kuhn & José-Luis Gaviria, 2015. "A Race Model for Responses and Response Times in Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 791-810, September.
    5. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    6. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    8. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    10. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    13. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    15. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    17. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    18. Rassoul Noorossana & Kamyar Sabri-Laghaie, 2015. "Reliability and maintenance models for a dependent competing-risk system with multiple time-scales," Journal of Risk and Reliability, , vol. 229(2), pages 131-142, April.
    19. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    20. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.