IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002205.html
   My bibliography  Save this article

Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion

Author

Listed:
  • Asgari, Ali
  • Si, Wujun
  • Yuan, Liang
  • Krishnan, Krishna
  • Wei, Wei

Abstract

In system prognostics and health management, multivariable degradation models have been widely developed to predict the life of complex systems using degradation data of multiple Performance Characteristics (PCs). Recent studies have detected a Long-Term Memory (LTM) effect among the degradation process of various PCs, implying a strong coupling phenomenon between the future degradation behavior and historical degradation trajectory. Although the LTM has been widely integrated into single-PC-based degradation modeling, it has not been considered in multi-PC-based scenarios. To capture LTM among multiple PCs, this article proposes a novel LTM-integrated Multivariate Degradation Model (MDM) for system life prediction based on multivariate fractional Brownian motion, which simultaneously incorporates the cross-correlation among different PCs. To estimate parameters of the LTM-integrated MDM, a maximum likelihood method is developed. Two likelihood-ratio hypothesis tests are developed to test the existence of the overall and individual LTM effect among multiple PCs. Both simulation studies and physical experiments on the performance degradation of solar energy conversion and storage devices are conducted to validate the proposed model. Results reveal that the proposed LTM-integrated MDM significantly outperforms existing MDMs in life prediction, while the lifetime uncertainty is heavily underestimated by those traditional approaches that neglect the LTM.

Suggested Citation

  • Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002205
    DOI: 10.1016/j.ress.2024.110146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.