IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v190y2019ic22.html
   My bibliography  Save this article

A second order SAP algorithm for risk and reliability based design optimization

Author

Listed:
  • Torii, A.J.
  • Lopez, R.H.
  • Miguel, L.F.F.

Abstract

This paper presents a decoupling approach for the efficient solution of Risk Optimization (RO) and Reliability Based Design Optimization (RBDO) problems. The proposed approach, SAP2nd, is a Sequential Approximate Programming (SAP) technique including second order terms obtained with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) approximation for the Hessian. A first advantage of SAP2nd is that any reliability analysis method can be employed for the evaluation of the probabilities of failure and its sensitivities. Here, Polynomial Chaos Expansion (PCE) is employed for this purpose. Several benchmark problems are solved to study the efficiency, robustness and accuracy of SAP2nd. It is demonstrated that the inclusion of second order terms leads to: (i) a much more stable algorithm in comparison to a first order SAP algorithm, i.e. it was able to avoid convergence issues arising from cycling, and (ii) a more efficient algorithm since SAP2nd reduced the computational effort, in both RO and RBDO problems, when compared to the coupled PCE algorithm previously proposed by the authors. The use of PCE for the evaluation of the probabilities of failure and its sensitivities allowed SAP2nd to achieve much more accurate results when compared to FORM based approaches, requiring the same order of computational effort. Finally, SAP2nd using PCE for reliability and sensitivity analysis is well suited for RO and RBDO problems where the drawbacks of FORM based approaches prevail, especially cases with highly nonlinear limit state function and non Gaussian random variables.

Suggested Citation

  • Torii, A.J. & Lopez, R.H. & Miguel, L.F.F., 2019. "A second order SAP algorithm for risk and reliability based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
  • Handle: RePEc:eee:reensy:v:190:y:2019:i:c:22
    DOI: 10.1016/j.ress.2019.106499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017311092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shan, Songqing & Wang, G. Gary, 2008. "Reliable design space and complete single-loop reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1218-1230.
    2. Karadeniz, Halil & ToÄŸan, Vedat & Vrouwenvelder, Ton, 2009. "An integrated reliability-based design optimization of offshore towers," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1510-1516.
    3. Shi, Lei & Lin, Shih-Po, 2016. "A new RBDO method using adaptive response surface and first-order score function for crashworthiness design," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 125-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2021. "Reliability index function approximation based on adaptive double-loop Kriging for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Carlon, André Gustavo & Kroetz, Henrique Machado & Torii, André Jacomel & Lopez, Rafael Holdorf & Miguel, Leandro Fleck Fadel, 2022. "Risk optimization using the Chernoff bound and stochastic gradient descent," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Peng, Yongbo & Ma, Yangying & Huang, Tianchen & De Domenico, Dario, 2021. "Reliability-based design optimization of adaptive sliding base isolation system for improving seismic performance of structures," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Shi, Yan & Lu, Zhenzhou & Huang, Hongzhong & Liu, Yu & Li, Yanfeng & Zio, Enrico & Zhou, Yicheng, 2022. "A new preventive maintenance strategy optimization model considering lifecycle safety," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Ling, Chunyan & Lu, Zhenzhou & Zhang, Xiaobo, 2020. "An efficient method based on AK-MCS for estimating failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Liu, Zhitao & Tan, CherMing & Leng, Feng, 2015. "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 169-177.
    3. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Liu, Wang-Sheng & Cheung, Sai Hung, 2017. "Reliability based design optimization with approximate failure probability function in partitioned design space," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 602-611.
    6. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    8. Zhuang, Xiaotian & Pan, Rong & Du, Xiaoping, 2015. "Enhancing product robustness in reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 145-153.
    9. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    10. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Yang, Hezhen & Zhu, Yun & Lu, Qijin & Zhang, Jun, 2015. "Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines," Renewable Energy, Elsevier, vol. 78(C), pages 16-25.
    12. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    13. Keshtegar, Behrooz & Chakraborty, Souvik, 2018. "Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 69-83.
    14. Qiang Cheng & Hongwei Zhao & Yongsheng Zhao & Bingwei Sun & Peihua Gu, 2018. "Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 191-209, January.
    15. ToÄŸan, Vedat & Karadeniz, Halil & DaloÄŸlu, AyÅŸe T., 2010. "An integrated framework including distinct algorithms for optimization of offshore towers under uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 847-858.
    16. Abdollahi, Azam & Amini, Ali & Hariri-Ardebili, Mohammad Amin, 2022. "An uncertainty-aware dynamic shape optimization framework: Gravity dam design," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:190:y:2019:i:c:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.