IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp80-89.html
   My bibliography  Save this article

A hybrid HEART method to estimate human error probabilities in locomotive driving process

Author

Listed:
  • Zhou, Jian-Lan
  • Lei, Yi
  • Chen, Yang

Abstract

Human reliability assessment is an essential work to guarantee the safety of locomotive driving process. Human Error Assessment and Reduction Technique (HEART) is a well-known approach applied to determine human error probability (HEP). However, the deficiencies of HEART are that the list of Error-producing conditions does not include many relevant railway operating performance shaping factors, and HEART does not provide the practitioners with a concrete method to determine the assessed proportion of affect (APOA), which force a heavy reliance on the judgement of single rater in the field. To overcome this problem and to obtain a more accurate APOA, we propose a hybrid HEART method which utilizes the evidence theory to fuse raters’ opinions to EPCs determination and APOA for each corresponding EPC and quantify the subjective judgment. A complete locomotive driving process is performed to evaluate HEP. Finally, we apply Monte Carlo simulation to obtain system reliability and validate proposed method. The calculated results are consistent with the experience and knowledge of safety management and simulation results. This hybrid HEART approach is useful to reduce the likelihood of occurrence of errors, and improve the overall safety level in locomotive driving operation and other industries.

Suggested Citation

  • Zhou, Jian-Lan & Lei, Yi & Chen, Yang, 2019. "A hybrid HEART method to estimate human error probabilities in locomotive driving process," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 80-89.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:80-89
    DOI: 10.1016/j.ress.2019.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018309074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Preischl, Wolfgang & Hellmich, Mario, 2013. "Human error probabilities from operational experience of German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 150-159.
    2. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    3. Belmonte, Fabien & Schön, Walter & Heurley, Laurent & Capel, Robert, 2011. "Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway trafficsupervision," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 237-249.
    4. Mojgan Aalipour & Yonas Zewdu Ayele & Abbas Barabadi, 2016. "Human reliability assessment (HRA) in maintenance of production process: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(2), pages 229-238, June.
    5. Talavera, Alejandro & Aguasca, Ricardo & Galván, Blas & Cacereño, Andrés, 2013. "Application of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 95-105.
    6. Park, Kyung S. & Lee, Jae in, 2008. "A new method for estimating human error probabilities: AHP–SLIM," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 578-587.
    7. Evans, Andrew W., 2013. "The economics of railway safety," Research in Transportation Economics, Elsevier, vol. 43(1), pages 137-147.
    8. Andrade, Antonio Ramos & Stow, Julian, 2017. "Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 317-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Akide Cerci Ogmen & Ismail Ekmekci, 2022. "HEART Hybrid Methods for Assessing Human Reliability in Coal-Fired Thermal Power Plant Process," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    6. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    7. Kyriakidis, Miltos & Majumdar, Arnab & Ochieng, Washington Y., 2018. "The human performance railway operational index—a novel approach to assess human performance for railway operations," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 226-243.
    8. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    9. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    10. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    11. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    12. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    13. Kuei-Hu Chang, 2022. "A novel reliability calculation method under neutrosophic environments," Annals of Operations Research, Springer, vol. 315(2), pages 1599-1615, August.
    14. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    17. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    18. Preischl, Wolfgang & Hellmich, Mario, 2016. "Human error probabilities from operational experience of German nuclear power plants, Part II," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 44-56.
    19. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    20. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:80-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.