IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v182y2019icp258-268.html
   My bibliography  Save this article

Reliability and efficiency evaluation of a community pharmacy dispensing process using a coloured Petri-net approach

Author

Listed:
  • Naybour, Matthew
  • Remenyte-Prescott, Rasa
  • Boyd, Matthew J.

Abstract

It has been estimated that European customers visit community pharmacies to access essential primary healthcare around 46 million times every day. Studies of dispensing error rates in community pharmacies have reported error rates of between 0.08% and 3.3% per item dispensed. While severe cases of dispensing inaccuracies often garner a high level of media coverage, less significant errors are also causing inefficiencies in primary healthcare delivery. If a variety of dispensing protocols and their consequences could be analysed using a modelling tool, the results would form the evidence for decisions on best practice guidelines in order to improve patient safety and pharmacy efficiency.

Suggested Citation

  • Naybour, Matthew & Remenyte-Prescott, Rasa & Boyd, Matthew J., 2019. "Reliability and efficiency evaluation of a community pharmacy dispensing process using a coloured Petri-net approach," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 258-268.
  • Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:258-268
    DOI: 10.1016/j.ress.2018.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018305258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Netjasov, Fedja & Janic, Milan, 2008. "A review of research on risk and safety modelling in civil aviation," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 213-220.
    2. Edidiong Ekaette & Robert C. Lee & David L. Cooke & Sandra Iftody & Peter Craighead, 2007. "Probabilistic Fault Tree Analysis of a Radiation Treatment System," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1395-1410, December.
    3. Liu, Xiaoxue & Zhang, Jiexin & Zhu, Peidong, 2017. "Modeling cyber-physical attacks based on probabilistic colored Petri nets and mixed-strategy game theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 13-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, R. & Dunnett, S.J. & Jackson, L.M., 2022. "Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Remigiusz Wisniewski & Grzegorz Bazydło & Paweł Szcześniak & Iwona Grobelna & Marcin Wojnakowski, 2019. "Design and Verification of Cyber-Physical Systems Specified by Petri Nets—A Case Study of a Direct Matrix Converter," Mathematics, MDPI, vol. 7(9), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahim A. Ganiyu, 2016. "Perceived Service Quality and Customer Loyalty: The Mediating Effect of Passenger Satisfaction in the Nigerian Airline Industry," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 52(1), pages 94-117, December.
    2. Ghoneim, Ayman & Abbass, Hussein A., 2016. "A multiobjective distance separation methodology to determine sector-level minimum separation for safe air traffic scenarios," European Journal of Operational Research, Elsevier, vol. 253(1), pages 226-240.
    3. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Ivano Bongiovanni & Cameron Newton, 2019. "Toward an Epidemiology of Safety and Security Risks: An Organizational Vulnerability Assessment in International Airports," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1281-1297, June.
    5. Christopher J. Cadham & Marie Knoll & Luz María Sánchez-Romero & K. Michael Cummings & Clifford E. Douglas & Alex Liber & David Mendez & Rafael Meza & Ritesh Mistry & Aylin Sertkaya & Nargiz Travis , 2022. "The Use of Expert Elicitation among Computational Modeling Studies in Health Research: A Systematic Review," Medical Decision Making, , vol. 42(5), pages 684-703, July.
    6. Rios Insua, D. & Alfaro, C. & Gomez, J. & Hernandez-Coronado, P. & Bernal, F., 2018. "A framework for risk management decisions in aviation safety at state level," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 74-82.
    7. Dhruv Pandya & Luca Podofillini & Frank Emert & Antony J Lomax & Vinh N Dang, 2018. "Developing the foundations of a cognition-based human reliability analysis model via mapping task types and performance-influencing factors: Application to radiotherapy," Journal of Risk and Reliability, , vol. 232(1), pages 3-37, February.
    8. Palleti, Venkata Reddy & Joseph, Jude Victor & Silva, Arlindo, 2018. "A contribution of axiomatic design principles to the analysis and impact of attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 21-32.
    9. Pacheco, Ricardo Rodrigues & Fernandes, Elton & Domingos, Eduardo Marques, 2014. "Airport airside safety index," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 86-92.
    10. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    11. Fox, Sarah Jane, 2020. "The ‘risk’ of disruptive technology today (A case study of aviation – Enter the drone)," Technology in Society, Elsevier, vol. 62(C).
    12. Sun, Jun-ya & Liao, Yang & Lu, Fei & Sun, Rui-shan & Jia, Hong-bo, 2023. "Assessment of pilot fatigue risk on international flights under the prevention and control policy of the Chinese civil aviation industry during the COVID-19," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Fox, Sarah, 2014. "Safety and security: The influence of 9/11 to the EU framework for air carriers and aircraft operators," Research in Transportation Economics, Elsevier, vol. 45(C), pages 24-33.
    14. Anders la Cour‐Harbo & Henrik Schiøler, 2019. "Probability of Low‐Altitude Midair Collision Between General Aviation and Unmanned Aircraft," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2499-2513, November.
    15. Chikha, Paulina & Skorupski, Jacek, 2022. "The risk of an airport traffic accident in the context of the ground handling personnel performance," Journal of Air Transport Management, Elsevier, vol. 105(C).
    16. M Baldauf & K Benedict & S Fischer & F Motz & J-U Schröder-Hinrichs, 2011. "Collision avoidance systems in air and maritime traffic," Journal of Risk and Reliability, , vol. 225(3), pages 333-343, September.
    17. Monika Blišťanová & Michaela Tirpáková & Jozef Galanda, 2022. "Proposal of Risk Identification Methodology Using the Prompt List on the Example of an Air Carrier," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    18. Jahangoshai Rezaee, Mustafa & Yousefi, Samuel, 2018. "An intelligent decision making approach for identifying and analyzing airport risks," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 14-27.
    19. Oster, Clinton V. & Strong, John S. & Zorn, C. Kurt, 2013. "Analyzing aviation safety: Problems, challenges, opportunities," Research in Transportation Economics, Elsevier, vol. 43(1), pages 148-164.
    20. Lalropuia, K.C. & Gupta, Vandana, 2019. "Modeling cyber-physical attacks based on stochastic game and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 28-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:258-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.