IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v136y2015icp85-91.html
   My bibliography  Save this article

Hidden Markov Models approach used for life parameters estimations

Author

Listed:
  • Fort, A.
  • Mugnaini, M.
  • Vignoli, V.

Abstract

In modern electronics and in electrical applications design is very important to be able to predict the actual product life or, at least, to be able to provide the end user with a reasonable estimate of such parameter. It is important to be able to define the availability as a key parameter because, although other performance indicators (as the mean time before failures MTBF or mean time to failure MTTF) exist, they are often misused.

Suggested Citation

  • Fort, A. & Mugnaini, M. & Vignoli, V., 2015. "Hidden Markov Models approach used for life parameters estimations," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 85-91.
  • Handle: RePEc:eee:reensy:v:136:y:2015:i:c:p:85-91
    DOI: 10.1016/j.ress.2014.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P Vrignat & M Avila & F Duculty & S Aupetit & M Slimane & F Kratz, 2012. "Maintenance policy: degradation laws versus hidden Markov model availability indicator," Journal of Risk and Reliability, , vol. 226(2), pages 137-155, April.
    2. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    3. Zamalieva, Daniya & Yilmaz, Alper & Aldemir, Tunc, 2013. "Online scenario labeling using a hidden Markov model for assessment of nuclear plant state," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mugnaini, Marco & Addabbo, Tommaso & Fort, Ada & Elmi, Alessandro & Landi, Elia & Vignoli, Valerio, 2020. "Magnetic brakes material characterization under accelerated testing conditions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Gámiz, María Luz & Limnios, Nikolaos & Segovia-García, María del Carmen, 2023. "Hidden markov models in reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1242-1255.
    3. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    4. Fort, Ada & Mugnaini, Marco & Vignoli, Valerio & Gaggii, Vittorio & Pieralli, Moreno, 2015. "Fault tolerant design of a field data modular readout architecture for railway applications," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 456-462.
    5. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    6. Addabbo, Tommaso & Fort, Ada & Mugnaini, Marco & Vignoli, Valerio & Simoni, Enrico & Mancini, Mario, 2016. "Availability and reliability modeling of multicore controlled UPS for datacenter applications," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 56-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    3. Ling, Xiaoliang & Wei, Yinzhao & Si, Shubin, 2019. "Reliability optimization of k-out-of-n system with random selection of allocative components," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 186-193.
    4. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    5. Zamalieva, Daniya & Yilmaz, Alper & Aldemir, Tunc, 2013. "A probabilistic model for online scenario labeling in dynamic event tree generation," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 18-26.
    6. Linmin Hu & Rui Peng, 2019. "Reliability modeling for a discrete time multi-state system with random and dependent transition probabilities," Journal of Risk and Reliability, , vol. 233(5), pages 747-760, October.
    7. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    9. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    11. Funda Iscioglu, 2017. "Dynamic performance evaluation of multi – state systems under non – homogeneous continuous time Markov process degradation using lifetimes in terms of order statistics," Journal of Risk and Reliability, , vol. 231(3), pages 255-264, June.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal loading of series parallel systems with arbitrary element time-to-failure and time-to-repair distributions," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 34-44.
    13. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    16. Yu, Huan & Yang, Jun & Peng, Rui & Zhao, Yu, 2016. "Reliability evaluation of linear multi-state consecutively-connected systems constrained by m consecutive and n total gaps," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 35-43.
    17. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:136:y:2015:i:c:p:85-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.