IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v142y2015icp456-462.html
   My bibliography  Save this article

Fault tolerant design of a field data modular readout architecture for railway applications

Author

Listed:
  • Fort, Ada
  • Mugnaini, Marco
  • Vignoli, Valerio
  • Gaggii, Vittorio
  • Pieralli, Moreno

Abstract

Modern data acquisition systems used to collect sensor signals are usually designed taking into consideration performance and operating parameters which are mainly related to sensitivity, selectivity, resolution and stability over time. In addition to such important features, field application systems should also respond to other constraints like reliability and availability and additionally, depending on the specific application, to some peculiar requirements in terms of safety. The present paper is addressed to supply an overview of the implications, during a sensor input/output hardware module design, of such parameters as the safety integrity level. The discussion involves the overall system design once integrated with availability considerations. In this manuscript, considerations concerning the on board software implementation are omitted without loss in generality. The study has been developed taking into account solutions suitable for railway applications like signaling or crossing detection systems.

Suggested Citation

  • Fort, Ada & Mugnaini, Marco & Vignoli, Valerio & Gaggii, Vittorio & Pieralli, Moreno, 2015. "Fault tolerant design of a field data modular readout architecture for railway applications," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 456-462.
  • Handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:456-462
    DOI: 10.1016/j.ress.2015.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Long & Wang, Hong & Kang, Kai & Wang, Kai, 2014. "A novel method for SIL verification based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 36-45.
    2. Guo, Haitao & Yang, Xianhui, 2008. "Automatic creation of Markov models for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 829-837.
    3. Fort, A. & Mugnaini, M. & Vignoli, V., 2015. "Hidden Markov Models approach used for life parameters estimations," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 85-91.
    4. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    5. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mugnaini, Marco & Addabbo, Tommaso & Fort, Ada & Elmi, Alessandro & Landi, Elia & Vignoli, Valerio, 2020. "Magnetic brakes material characterization under accelerated testing conditions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
    3. Kretzschmar, U. & Gomez-Cornejo, J. & Astarloa, A. & Bidarte, U. & Ser, J. Del, 2016. "Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    2. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    3. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    4. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    6. Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
    7. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    8. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    9. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    10. Rachid Sal & Rachid Nait-Said & Mouloud Bourareche, 2017. "Dealing with uncertainty in effect analysis of test strategies on safety instrumented system performance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1945-1958, November.
    11. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    12. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    13. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    14. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    15. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    17. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    19. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    20. Sun, Bo & Fan, Xuejun & Ye, Huaiyu & Fan, Jiajie & Qian, Cheng & van Driel, Williem & Zhang, Guoqi, 2017. "A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 14-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:456-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.