IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics095183201830125x.html
   My bibliography  Save this article

Reliability modeling of subsea SISs partial testing subject to delayed restoration

Author

Listed:
  • Wu, Shengnan
  • Zhang, Laibin
  • Zheng, Wenpei
  • Liu, Yiliu
  • Lundteigen, Mary Ann

Abstract

Subsea oil and gas production has always involved the challenging task of determining the overall reliability of safeguarding systems, such as safety instrumented systems (SISs). Partial testing and delayed restoration of SISs are the main issues in operation and maintenance activities. This paper proposes a novel reliability-modeling methodology for subsea SISs subject to partial testing and delayed restoration. The proposed methodology incorporates an increasing failure rate in conjunction with dangerous undetected failures for the final elements. Approximation formulas for evaluating the average probability of failure on demand are derived for SISs in the low-demand operating mode. In addition, the effects of degradation are modeled by following Weibull rules in different subsequent partial testing intervals. In contrast to previous works, the present research accounts for delayed restoration after detecting failures and also considers the repair time for different scenarios. The proposed formulas are compared with the existing ones for partial verification. A case study on the shutdown valves of a subsea high-integrity pressure protection system is presented to illustrate the feasibility of the proposed methodology. It is also proven that the proposed approximation offers a robust opportunity for testing strategy optimization and performance improvement of SISs.

Suggested Citation

  • Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s095183201830125x
    DOI: 10.1016/j.ress.2019.106546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201830125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoyue & Hillston, Jane, 2015. "Mission reliability of semi-Markov systems under generalized operational time requirements," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 122-129.
    2. Alban, Andres & Darji, Hardik A. & Imamura, Atsuki & Nakayama, Marvin K., 2017. "Efficient Monte Carlo methods for estimating failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 376-394.
    3. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    4. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    5. Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.
    6. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    7. Guo, Haitao & Yang, Xianhui, 2008. "Automatic creation of Markov models for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 829-837.
    8. Lundteigen, Mary Ann & Rausand, Marvin, 2008. "Spurious activation of safety instrumented systems in the oil and gas industry: Basic concepts and formulas," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1208-1217.
    9. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    10. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    11. Rahimi, Maryam & Rausand, Marvin, 2013. "Monitoring human and organizational factors influencing common-cause failures of safety-instrumented system during the operational phase," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 10-17.
    12. R Pascual & D Louit & A K S Jardine, 2011. "Optimal inspection intervals for safety systems with partial inspections," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2051-2062, December.
    13. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    14. Jigar, Abraham Almaw & Liu, Yiliu & Lundteigen, Mary Ann, 2016. "Spurious activation analysis of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 15-23.
    15. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    16. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    17. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    18. Hauge, S. & Hokstad, P. & HÃ¥brekke, S. & Lundteigen, M.A., 2016. "Common cause failures in safety-instrumented systems: Using field experience from the petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 34-45.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    20. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    21. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    22. Grabaskas, Dave & Nakayama, Marvin K. & Denning, Richard & Aldemir, Tunc, 2016. "Advantages of variance reduction techniques in establishing confidence intervals for quantiles," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 187-203.
    23. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Unavailability assessment of redundant safety instrumented systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 18-33.
    24. Elena Rogova & Gabriel Lodewijks & Mary Ann Lundteigen, 2017. "Analytical formulas of PFD and PFH calculation for systems with nonconstant failure rates," Journal of Risk and Reliability, , vol. 231(4), pages 373-382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    3. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Chuan Wang & Jun Gou & Yingcheng Tian & Hao Jin & Chao Yu & Yupeng Liu & Jiajun Ma & Yong Xia, 2022. "Reliability and availability evaluation of subsea high integrity pressure protection system using stochastic Petri net," Journal of Risk and Reliability, , vol. 236(3), pages 508-521, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    2. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    3. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    6. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    7. Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    8. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    9. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    10. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    11. Zhang, Aibo & Hao, Songhua & Li, Peng & Xie, Min & Liu, Yiliu, 2022. "Performance modeling for condition-based activation of the redundant safety system subject to harmful tests," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Chuan Wang & Jun Gou & Yingcheng Tian & Hao Jin & Chao Yu & Yupeng Liu & Jiajun Ma & Yong Xia, 2022. "Reliability and availability evaluation of subsea high integrity pressure protection system using stochastic Petri net," Journal of Risk and Reliability, , vol. 236(3), pages 508-521, June.
    15. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    16. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    17. Min Zhang & Zhijian Zhang & Ali Mosleh & Sijuan Chen, 2017. "Common cause failure model updating for risk monitoring in nuclear power plants based on alpha factor model," Journal of Risk and Reliability, , vol. 231(3), pages 209-220, June.
    18. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    20. Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s095183201830125x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.