IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v171y2018icp18-33.html
   My bibliography  Save this article

Unavailability assessment of redundant safety instrumented systems subject to process demand

Author

Listed:
  • Alizadeh, Siamak
  • Sriramula, Srinivas

Abstract

The process industry has always been faced with the challenging task of determining the overall unavailability of safeguarding systems such as the safety instrumented systems (SISs). This paper proposes an unavailability model for a redundant SIS using Markov chains. The proposed model incorporates process demands in conjunction with dangerous detected and undetected failures for the first time and evaluates their impacts on the unavailability quantification of SIS. The unavailability of the safety instrumented system is quantified by considering the probability of failure on demand (PFD) for low demand systems. The safety performance of the system is also assessed using hazardous event frequency (HEF) to measure the frequency of system entering a hazardous state that will lead to an accident. The accuracy of the proposed Markov model is verified for a case study of a chemical reactor protection system. It is demonstrated that the proposed approach provides a sufficiently robust result for all demand rates, demand durations, dangerous detected and undetected failure rates and associated repair rates for safety instrumented systems utilised in low demand mode of operation. The effectiveness of the proposed model offers a robust opportunity to conduct unavailability assessment of redundant SISs subject to process demands.

Suggested Citation

  • Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Unavailability assessment of redundant safety instrumented systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 18-33.
  • Handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:18-33
    DOI: 10.1016/j.ress.2017.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    2. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    3. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:171:y:2018:i:c:p:18-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.