IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v94y2015icp66-71.html
   My bibliography  Save this article

Application of air classification for improved recycling of sinter plant dust

Author

Listed:
  • Lanzerstorfer, Christof

Abstract

In sinter plants the dust collected from the off-gas is recycled back to the feed material as long as the chloride content of this dust in below the plant-specific limits. To avoid an up-cycling of chloride in the system in many sinter plants the dust from the last field of the electrostatic precipitator is excluded from recycling since the chloride concentration is higher in the dust collected in the rear fields of the electrostatic precipitator. In this study the application of air classification is investigated to raise the dust recycling rate and/or to increase the chloride discharge. Samples from each field of the four field electrostatic precipitator of an iron ore sinter plant were classified and analyzed. The mass-recovery – chloride-removal functions for various classification variants were calculated by using approximation functions for the mass and the chloride content of the particle classes produced. The results show that in comparison with the actual situation where about 20% of the sintering dust which contains about 30% of the chloride is excluded from recycling, by applying air classification the recycling rate could be increased to about 95%, retaining the same chloride discharge rate. In the case of the expected extraction of potassium from sintering dust in the future, air classification could also be used to increase the potassium chloride concentration of the input material.

Suggested Citation

  • Lanzerstorfer, Christof, 2015. "Application of air classification for improved recycling of sinter plant dust," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 66-71.
  • Handle: RePEc:eee:recore:v:94:y:2015:i:c:p:66-71
    DOI: 10.1016/j.resconrec.2014.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanzerstorfer, Christof & Kröppl, Michaela, 2014. "Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 132-137.
    2. Serge Roudier & Luis Delgado Sancho & Rainer Remus & Miguel Aguado-Monsonet, 2013. "Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control," JRC Research Reports JRC69967, Joint Research Centre.
    3. Das, B. & Prakash, S. & Reddy, P.S.R. & Misra, V.N., 2007. "An overview of utilization of slag and sludge from steel industries," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 40-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannu Suopajärvi & Antti Salo & Timo Paananen & Riku Mattila & Timo Fabritius, 2013. "Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation," Resources, MDPI, vol. 2(2), pages 1-15, May.
    2. Lobato, Natália Cristina Candian & Villegas, Edwin Auza & Mansur, Marcelo Borges, 2015. "Management of solid wastes from steelmaking and galvanizing processes: A brief review," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 49-57.
    3. Barbora Švédová & Helena Raclavská & Marek Kucbel & Jana Růžičková & Konstantin Raclavský & Miroslav Koliba & Dagmar Juchelková, 2020. "Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region," IJERPH, MDPI, vol. 17(10), pages 1-26, May.
    4. Mahjouri, Maryam & Ishak, Mohd Bakri & Torabian, Ali & Manaf, Latifah Abd & Halimoon, Normala, 2017. "Determining the best practicable control technology and its associated emission levels for Iron and Steel industry in Iran," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 114-123.
    5. Gahan, Chandra Sekhar & Sundkvist, Jan-Eric & Engström, Fredrik & Sandström, Åke, 2011. "Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 541-547.
    6. Lanzerstorfer, Christof & Kröppl, Michaela, 2014. "Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 132-137.
    7. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    8. Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
    9. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    10. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.
    11. Rikard Edland & Fredrik Normann & Thomas Allgurén & Christian Fredriksson & Klas Andersson, 2019. "Scaling of Pulverized-Fuel Jet Flames That Apply Large Amounts of Excess Air—Implications for NO x Formation," Energies, MDPI, vol. 12(14), pages 1-18, July.
    12. Daniela Laura Buruiana & Cristian-Dragos Obreja & Elena Emanuela Herbei & Viorica Ghisman, 2021. "Re-Use of Silico-Manganese Slag," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    13. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    14. Jeong, Yong-Soo & Matsubae-Yokoyama, Kazuyo & Kubo, Hironari & Pak, Jong-Jin & Nagasaka, Tetsuya, 2009. "Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 479-489.
    15. Hugo Rondon Quintana & Saieth Chaves-Pabón & Diego A. Escobar, 2018. "Evaluation of a Warm Mix Asphalt Manufactured with Blast Furnace Slag," Modern Applied Science, Canadian Center of Science and Education, vol. 12(12), pages 1-28, December.
    16. Zhang, Tongsheng & Yu, Qijun & Wei, Jiangxiong & Li, Jianxin & Zhang, Pingping, 2011. "Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 48-55.
    17. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    18. Ludwik Kosyrczyk & Slawomir Stelmach & Krzysztof Gaska & Agnieszka Generowicz & Natalia Iwaszczuk & Dariusz Kardaś, 2021. "Optimization of Thermal Parameters of the Coke Oven Battery by Modified Methodology of Temperature Measurement in Heating Flues as the Management Tool in the Cokemaking Industry," Energies, MDPI, vol. 14(4), pages 1-13, February.
    19. Lundkvist, Katarina & Larsson, Mikael & Samuelsson, Caisa, 2013. "Optimisation of a centralised recycling system for steel plant by-products, a logistics perspective," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 29-36.
    20. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:94:y:2015:i:c:p:66-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.